
www.manaraa.com

HARVARD UNIVERSITY
Graduate School of Arts and Sciences

DISSERTATION ACCEPTANCE CERTIFICATE

The undersigned, appointed by the

School of Engineering and Applied Sciences

have examined a dissertation entitled

"Rationally Motivated Failure in Distributed Systems"

presented by Jeffrey Allen Shneidman

candidate for the degree of Doctor of Philosophy and hereby
certify that it is worthy of acceptance.

Signature YVQA
Typed name: Prof. M. Seltze

Signature ') c \ ,Q- 3 C - ' ^ N .

Typed name: Prof. D. Parkes

Signature Zftgr*eeq &&£%&

Typed n!qmey Dr. J. Waldo

Date: July 28, 2008

www.manaraa.com

www.manaraa.com

Rationally Motivated Failure in Distributed Systems

A dissertation presented

by

Jeffrey Allen Shneidman

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

November 2008

www.manaraa.com

UMI Number: 3334794

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3334794

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

©2008 - Jeffrey Allen Shneidman

All rights reserved.

www.manaraa.com

Dissertation Advisors Author

Professor Margo Ilene Seltzer Jeffrey Allen Shneidman

Professor David Christopher Parkes

Rational ly Motivated Failure in Distr ibuted Systems

Abstract

Modern distributed systems are under threat from a surprising source: the willful

failure by their own users. These failures are not due to chance, nor are they maliciously

motivated. Rather, these failures are rationally motivated.

Despite evidence of rationally motivated failure in real systems, there has been

surprisingly little work on rational behavior in the context of system fault tolerance. This

thesis describes a form of defensive design used to build distributed systems that are robust

to rationally motivated failure. Our approach proactively prevents rationally motivated

failure by addressing the underlying failure cause. This approach differs markedly from

traditional distributed system techniques of dealing with failure, which reactively seek to

recover from an expressed failure.

This thesis makes four main contributions toward understanding and designing for

rationally motivated failure. This thesis...

• ...formalizes faithfulness as the metric by which to judge an algorithm's tolerance to

rationally motivated failure. A proof of specification faithfulness is a certification that

rational nodes will choose to follow the algorithm specified by the system designer.

• ...reveals information revelation failure as an important type of failure expression,

and shows that the feasibility and cost of addressing information revelation failure is

different from other types of failure.

• ...proposes a practical three-part methodology for building systems that can prevent

rationally motivated failure expression.

• ...applies this methodology to two problems: First, we use the rationally motivated

failure remedy methodology to extend an existing interdomain routing protocol and

prove the extension to be faithful under the ex post Nash solution concept. We imple­

ment the extended algorithm in a simulator and compare the message complexity with

the original unfaithful algorithm. Second, we apply the methodology to the problem

of distributed consensus to solve a scenario called the Rational Byzantine Generals

in

www.manaraa.com

Abstract IV

problem. We design an algorithm that is faithful under the 1-partial ex post Nash

solution concept. We implement the algorithm over a network and evaluate the fault

tolerance, message complexity, and scalability by comparing the new algorithm with

appropriate existing protocols.

www.manaraa.com

Contents

Title Page i
Abstract iii
Table of Contents v
Citations to Previously Published Work viii
Acknowledgments ix
Dedication xi

1 Introduction 1
1.1 Rationally Motivated Failure 1

1.1.1 Examples: Rationally Motivated Failure in Systems 2
1.1.2 Rationally Motivated Fault Tolerance: An Evolutionary Response . 5

1.2 Thesis Contributions 6
1.2.1 Information Revelation Failure Expression 6
1.2.2 Faithfulness 6
1.2.3 Methodology to Address Rationally Motivated Failure 7
1.2.4 Application of Methodology 8

1.3 Thesis Outline 8

2 Approaches to Rationally Motivated Failure 10
2.1 A New Problem: The Rational Byzantine Generals 10
2.2 Relevant Prior Work 14

2.2.1 Autonomous Nodes 15
2.2.2 BAR Fault Tolerance 15

2.3 Related Research: Distributed System Fault Tolerance 17
2.4 Related Research: Failure in Mechanism Design 21
2.5 Related Research: Failure in Networking 23

2.5.1 Game-Theoretic Reasoning 23
2.5.2 Overlay and Peer-to-Peer Networks 24

2.6 Related Research: Security 27
2.7 Reflections on Related Work: What is Rational? 28

2.7.1 Rational Compatible Behavior 29
2.7.2 Limitations of Rational Behavior 30

3 Rationally Motivated Failure 32
3.1 Preliminaries 32
3.2 Utility and Type 33
3.3 Actions 35

3.3.1 Information Revelation Action 37

v

www.manaraa.com

Contents vi

3.3.2 Computation Action 39
3.3.3 Message-Passing Action 39

3.4 Strategy 40
3.4.1 Suggested Strategy 40
3.4.2 Equilibrium Strategy 41

3.5 Rationally Motivated Failure 43
3.6 The Mechanism as the Remedy 43

3.6.1 Approaches to Mechanism Design 45
3.6.2 Mechanism Equilibrium 47
3.6.3 Mechanism Solution Concepts 48
3.6.4 Choosing the Appropriate Solution Concept 52

3.7 Bibliographic Notes 52

4 Methodology to Address Rationally Motivated Failure 55
4.1 Model the Environment 56

4.1.1 Participant Model 56
4.1.2 Network Model 57
4.1.3 Dependency Model 57

4.2 Design, Prove, and Implement Specification 58
4.2.1 Identify a Subset of Rational Compatible Behavior 58
4.2.2 Specify a Mechanism and Suggested Strategy 59
4.2.3 Prove Specification Faithfulness 60

4.3 Evaluate Effectiveness, Impact, and Cost 60
4.4 Proving Specification Faithfulness 61

4.4.1 Useful Properties: CC, AC, and IC 61
4.4.2 Strong AC and Strong CC 63
4.4.3 Faithfulness Proof Tools 65

4.5 Bibliographic Notes 67

5 Rationally Motivated Failure in Interdomain Routing 69
5.1 Introduction 69
5.2 Problem Description 71
5.3 FPSS Interdomain Routing 72

5.3.1 Model 73
5.3.2 FPSS Algorithm Overview 74

5.4 FPSS+: An Extension to FPSS 76
5.4.1 Model 77
5.4.2 Checker Nodes 79
5.4.3 FPSS+ Algorithm Overview 80
5.4.4 FPSS+ Faithfulness Proof 82

5.5 FPSS++: An extension of FPSS+ 89
5.5.1 Model 89
5.5.2 FPSS++ Algorithm Overview 89
5.5.3 FPSS++ Faithfulness Proof 90

5.6 Complexity and Simulation 93
5.7 Bibliographic Notes 98

www.manaraa.com

Contents vii

6 Methodology Applied: Failure in Distributed Consensus 99
6.1 Introduction 99
6.2 Problem Description 100

6.2.1 The Rational Byzantine Generals Revisited 100
6.2.2 Faulty MDPOP 102
6.2.3 Problem Comments 105

6.3 Model 106
6.3.1 Participant Model 106
6.3.2 Network Model 107
6.3.3 Dependency Model 107

6.4 Remedy: The RaBC Algorithm 107
6.4.1 Logical Device Dependencies 108
6.4.2 Algorithm Mechanics: The Suggested Strategy 109
6.4.3 Bootstrap 110
6.4.4 Consensus in Main Economy 113
6.4.5 Consensus in Marginal Economies 114
6.4.6 Tax 114
6.4.7 Failure Detection and Reporting 114
6.4.8 The Referee 115

6.5 Analysis, Implementation, and Evaluation 118
6.5.1 Experimental Setup 118
6.5.2 Logical Device Realizations 120
6.5.3 Benchmarks 121

6.6 Mechanism Proof 124
6.6.1 Truthful Information Revelation 125
6.6.2 Reliable Fault Detection 126
6.6.3 Reliable Deviation Reporting 128
6.6.4 Achieving strong-AC and strong-CC 131
6.6.5 Effects of Collusion and Sybil Attacks 131

6.7 Summary 132
6.8 Bibliographic Notes 132

7 Conclusions 133
7.1 Summary 133
7.2 Future Work 134

7.2.1 Faithfulness of non-VCG based Systems 134
7.2.2 Revised Protocols: RaBC++? 135
7.2.3 Demographics of Rationality 135
7.2.4 Real Currency 136
7.2.5 Mechanism Execution 137
7.2.6 Additional Failure Expressions? 138
7.2.7 Backtracing 138
7.2.8 Repeated Games and Collusion-Proof Games 139

7.3 Final Words 139

Bibliography 141

www.manaraa.com

Citations to Previously Published Work

Earlier versions of content in Chapters 4 and 5 have appeared in the following paper:

"Specification Faithfulness in Networks with Rational Nodes", J. Shneidman and
D. C. Parkes, Proc. 23rd ACM Symp. on Principles of Distributed Computing
(PODC'04), St. John's, Canada, 2004.

Ideas related to the partition principle appear in the following paper:

"Distributed Implementations of Vickrey-Clarke-Groves Mechanisms", D. C.
Parkes and J. Shneidman, Proc. 3rd Int. Joint Conf. on Autonomous Agents
and Multi Agent Systems (AAMAS'04), New York, NY, 2004.

viii

www.manaraa.com

Acknowledgments

One of the greatest gifts that a researcher can make to a graduate student is

the sentence that begins, "We assume..." The origins of this thesis are found in such a

statement, and in a basic misunderstanding that I had in 1999 while attending Harvard as

a visiting student. During that year, I took my first distributed systems class from Jim

Waldo and came across the problem of distributed agreement with faults. This canonical

problem concerns how to establish a consistent view of a piece of data across a distributed

group of participants. When I first heard the problem, I mistook the problem to be the

establishment of the validity of the data content itself, and not simply the establishment of

a common view on the data content. It seemed to me impossible to check the correctness

of a piece of revealed information, and indeed this was not the intention of the algorithm.

Fast forward to 2002. During my first year as a Ph.D. student, I had taken Nancy

Lynch and Robert Morris's classes in distributed systems at M.I.T. and had settled into

distributed systems as my intended focus. A new professor, David Parkes, was offering a

class at Harvard in "Computational Mechanism Design" with a few lectures that looked

relevant to distributed computing. I knew nothing else about the topic. What I found in

David's course was a new field of computer science (the earliest papers dating from the late

90s) that provided a way to guarantee the correctness of a piece of revealed information

under certain conditions.

It seemed exciting and obvious to me that the lessons and techniques learned in

that class should be merged with ideas from distributed computing. My final project in that

class paved the way to a qualifying exam topic that challenged an underlying assumption

in Feigenbaum et al.'s interdomain routing protocol and finally to this thesis.

I am grateful to a number of people for helping me on my path to a Ph.D. First,

I would like to thank my committee, consisting of Margo Seltzer, David Parkes, and Jim

Waldo. Each provided a very different perspective on my thesis, and their feedback taken

together dramatically increased the quality of this final document. I was grateful at times

for the feeling that my advisors had not forgotten the challenges of writing their own theses.

When the writing process was frustratingly slow, David in particular was fantastic, offering

insightful feedback on whatever prose I had produced that week, which often lifted my mood

and served as strong encouragement to keep going. Apart from their thesis advising duties,

I feel especially lucky to have had Margo and David as advisors during my graduate school

career. They demonstrate that it is possible to be both brilliant and kind in academia. I

want to thank Margo, who is a wonderful vetter of ideas, even though she hates it when

I make up words like vetter. Margo allowed this thesis to happen by encouraging me to

do interesting research and supporting me even as that research led away from traditional

ix

www.manaraa.com

Acknowledgments x

work in systems.

I would like to thank Susan Wieczorek who has been a supportive non-faculty

resource over the last seven years. Throughout the process, ups and downs were shared

with ofncemates Jonathan Ledlie, Chaki Ng. Lex Stein, and Uri Braun, and with members

of the ICE team, including Benjamin Lubin, Adam Juda, Hassan Sultan, Ruggiero Cavallo,

and Sebastien Lahaie, and Professor Peter Pietzuch and the rest of the EconCS and Syrah

project groups. I would also like to thank Professors Michael Mitzenmacher, Joe Heller-

stein, Rahul Sami, Joan Feigenbaum, and the systems and networking team at Microsoft

Research U.K. including Peter Key, Laurent Massoulie, Miguel Castro and Ant Rowstron.

Finally, I would like to thank my loving and supportive family, Mom and Dad, Laura and

Ed, and last but most, my wife Danni.

Portions of this work and my other graduate research were supported in part by

NSF grants IIS-0238147 and ACI-0330244.

www.manaraa.com

For the folks.

And for Ed,

who first pointed me eastward.

XI

www.manaraa.com

Chapter 1

Introduction

Modern distributed systems are under threat from a surprising source: the willful

failure by their own users. Prom the Internet Transmission Control Protocol (TCP) [SCWA99]

to the protocols that enable the the search for extra-terrestrial life [KahOl], failures oc­

cur when self-interested participants choose, for selfish reasons, not to follow the system-

specified algorithm. In such cases, the system suffers collateral damage from the deliberate

failure of its own participants. The side effects of a participant's decision to fail may drive

the system into an undesirable state.

These failures are not due to chance, nor are they maliciously motivated. Rather,

these failures are rationally motivated. This thesis describes a form of defensive design that

should be used to build distributed systems that are robust to rationally motivated failure.

Our approach proactively prevents rationally motivated failure expression by understanding

and addressing the underlying failure cause. This approach differs markedly from traditional

distributed systems techniques of dealing with failure, which reactively seek to recover from

an expressed failure.

1.1 Rationally Motivated Failure

Rationally motivated failure is the subset of intentional behavior that occurs when

a participant aims to better its outcome in a distributed algorithm, resulting in a deviation

from the correct system algorithm. For now, we will satisfy ourselves with this intuitive

definition, but we formalize this concept later in Chapter 3. Rationally motivated failure

is a concern when it is damaging to other participants or to an overall system goal. In

this thesis, we show that the key difference between failures due to rational behavior and

failures due to other causes is that rationally motivated failures can be avoided. Rational

1

www.manaraa.com

Chapter 1: Introduction 2

behavior is not arbitrary; rationally motivated failure is a consequence of system design

that conflicts with a user's goal. Rational behavior is entirely predictable, assuming that

one can correctly model rational participants, and avoidable, assuming that one is willing

and able to change the system design.

1.1.1 Examples: Rationally Motivated Failure in Sys tems

One can readily find examples of failure due to rational behavior. In this section,

we describe four such instances of rationally motivated failure. We describe each system,

identify the rational behavior and failure opportunity, and examine the impact of the failure.

TCP Hacking

The Transmission Control Protocol (TCP) is a core Internet protocol used by

higher level protocols to provide reliable and ordered message delivery. In TCP, a receiver

provides an acknowledgment message to the sender and the contents of this message deter­

mine the sender's transmission rate.

Rationally Motivated Failure. Because a TCP sender always trusts the con­

tents of the receiver's acknowledgment message, a performance-hungry receiver can force

a sender to send data far faster than is fair in a multi-user environment. Savage et al.

describe manipulation opportunities that arise from a specification oversight in TCP's con­

gestion control mechanism [SCWA99]. For example, in one of Savage's manipulations the

receiver preemptively acknowledges packets that have not yet been sent.

Cost and Effect. Savage et al. demonstrate how their attacks slashed HTTP

download times [SCWA99] for the manipulating user and report how an early experi­

ment [JanOO] saturated their university network with a single download! They speculate

that if widely deployed these manipulations would lead to Internet congestion collapse. The

initial cost of these changes was that a programmer modified 11-45 lines of source code for

each manipulation. Presumably, these manipulations have not caught on, or else the In­

ternet would have ground to a halt. However, a new cottage industry of vendors provides

"high-performance" replacement TCP drivers aimed at gamers, file sharing aficionados,

and Voice-over-IP users [cFo06]. So far, these drivers seem to stick to less system-harmful

ideas like traffic shaping and ACK-promoting, but commercial pressures could provide an

incentive to enable more inventive and system-damaging behavior.

www.manaraa.com

Chapter 1: Introduction 3

SetiOHome Errors

Seti@Home is a distributed computation system where participants run clients that

download raw data from a server, perform computation, and upload finished "work units"

to the server. There is a scoring system that rewards users with (otherwise meaningless)

points tied to their level of work submission.

Rationally Motivated Failure. While the majority of users contribute their

computer time to further a research goal or to feel useful, about ten percent of users report

that the competition of getting a high score on the leader boards is their primary motivation

for participating in the system [BOI06]. Moreover, another set of users reports the leader

board as a secondary motivation for participation, even justifying the purchase of new faster

hardware to increase their score [Use06].

Early versions of the Seti@home client were hacked to upload junk, labeled as

finished work, in order to drive up their leader board score. These manipulations were

successful because early leader board algorithms trusted clients in their work reporting.

Cost and Effect. The benefit to some users of increased leader board rankings

(and related feelings of accomplishment) outweighed the cost of manipulation and of any

feelings for damaging the scientific experiment. Moreover, once this cost was incurred by

one individual, the hacked software was widely distributed through websites, chat sessions

and e-mail [KahOl]. The system cost of this rational manipulation is correctness, and later,

lost efficiency though increased need to verify user calculations.

Participation Problems in Database Systems

Distributed database systems allow users to execute queries across data that is

distributed around a network. The execution of a computationally expensive operation

(such as a database join) can take place far from the user that originated the query.

Rationally Motivated Failure. When a rational participant feels that its cost

of participating in a system outweighs its benefit, the participant can simply stop partic­

ipating. Stonebraker and Hellerstein blame the lack of widespread distributed database

adoption in the 1990s partly for this rationally motivated failure of participation. In these

database systems, when "the optimizer decides that a join will happen on a particular ma­

chine, the local system administrator is powerless to forbid it, other than by refusing to

participate in the distributed system at all" [SH03]. Database administrators could not

express their costs and had little incentive to remain in the system. Denying remote queries

in favor of local users removed much of the supposed benefit of the system.

www.manaraa.com

Chapter 1: Introduction 4

Cost and Effect. Participants chose not to participate in the system because of

real imposed costs and inconvenience. This behavior was particularly damaging when the

opted-out participant had private data that was not shared by other users. The system cost

was the risk of failure when too many users chose not to participate.

File Sharing Manipulations

Peer to peer file sharing systems enable users to store, locate, and retrieve files

from other users. These systems' success relies on the network effect generated when many

users choose to participate in the system.

Rationally Motivated Failure. Peer-to-peer file sharing systems showcase a

host of rationally motivated manipulations. Most simply, if participants do not anticipate

a benefit from their participation, they simply opt not to participate. File sharing systems

such as MojoNation [McCOl], Kazaa [Net07], and BitTorrent [Coh03] have attempted to

address the partial participation free riding problem by adding incentives for participation.

The Gnutella [AHOO] file sharing network is an early example where users' partial

participation damaged the overall quality of the system. In Gnutella, participants had

private information (files) that they were unwilling to share, because doing so only increased

consumed bandwidth, risk of legal action, etc. These users simply consumed resources

offered by less selfish participants, resulting in a host of network problems [AHOO, HCW05].

Kazaa, a successive file sharing program, addressed this free riding problem by

including a "participation level" score that allowed other peers to verify that a participant

was fully participating in file exchanges. As a result, participants with high participation

scores were more likely to get good service on the Kazaa network. However, this score

was self-reported by peers and subject to manipulation; within two years, unofficial user-

modified clients were released that allowed a user to lie and claim a high participation

score [Kat]. This modified client eventually dominated the regular client and free-riding

behaviors began to dominate the system [Net07]. More elaborate manipulative strategies

were later published and the resulting system degradation played a role in the attrition of

millions of users from the system [Net07] as they looked for better file sharing alternatives.

BitTorrent is a peer-to-peer file sharing system that works by coordinating users

to exchange file pieces with each other, while allowing users to download random pieces

from other users that have complete copies of the file. BitTorrent was designed specifi­

cally to address the types of rational manipulations that had stymied earlier file sharing

systems. But even in BitTorrent numerous manipulations have been found. Our previous

work was the first to report such manipulations [SPM04]. Since that work was published,

www.manaraa.com

Chapter 1: Introduction 5

other teams have built and published actual BitTorrent compatible software clients that rely

on false identity and selfish protocol manipulations to increase their download speed (e.g.,

BitThief [LMSW06]). A more recent version of the BitTorrent protocol has been modified

in a further attempt to combat free riding behavior. This revision relies on a centralized

component called the tracker to act as a policeman to monitor participation. In this exten­

sion, the client software employs a Kazaa-like self-reported participation metric [Net07]. As

might be expected, manipulative clients have now been released that allow users to tweak

their self-reported scores, such as GreedyTorrent [Tor07]. BitTyrant [PIA+07] is an another

example of a system that manipulates partner selection, going against the designer's pro­

tocol fairness intentions. Researchers have also pointed out how modified clients are not

needed since some of the design features meant to induce cooperation actually induce free

riding [JA05].

Cost and Effect. The above discussion describes a slew of manipulations that

have varying implementation costs, ranging from the simple changing of application pa­

rameters to editing of application code. These manipulations have varying levels of effect,

ranging from free riding through partial participation to aggressive damage of the overall

network.

1.1.2 Rationally Motivated Fault Tolerance: An Evolutionary Response

Despite evidence of rationally motivated failure in real systems, there has been sur­

prisingly little work on rational behavior in the context of system fault tolerance. With the

exception of the recent autonomous nodes and BAR fault tolerance papers [MT02, AAC+05]

discussed in the next chapter, we are not aware of work that attempts to bridge studies

of rational behavior with prior work in fault tolerant distributed algorithms. We hypoth­

esize that rationally motivated failure is only now receiving attention from the systems

community for the following reasons:

• The Internet has given rise to historically unprecedented "open" distributed systems.

As Christos Papadimitriou writes [PapOl], "the Internet is unique among all computer

systems in that it is built, operated, and used by a multitude of diverse economic

interests, in varying relationships of collaboration and competition with each other."

Distributed systems are no longer closed systems monitored closely by a group of

common-interest researchers, and along with an increase in the number of diverse

participants, both the number of distributed algorithms and the number of algorithm

implementations have also increased. As participants' needs and designers' goals

conflict, one might expect rational behavior to play a more prominent role.

www.manaraa.com

Chapter 1: Introduction 6

• Some of the tools for addressing rationally motivated failure have not been well-known

to system designers. For example, this thesis combines systems techniques with ideas

from economics to build better algorithms. A relevant area of economics known as

mechanism design has historically been overlooked by systems researchers, perhaps

being labeled as too theoretical. Systems researchers have been limited by working in

a fault-exclusion mindset and by relying on existing Byzantine Fault Tolerance tech­

niques [CL99] as a band-aid to rationally motivated deviations. In contrast, designing

for rational participants requires a designer to work with fault-prevention techniques.

1.2 Thesis Contributions

This thesis makes four main contributions toward understanding and designing for

rationally motivated failure.

1.2.1 Information Revelat ion Failure Expression

This thesis points out one important type of failure expression that is well-known

within economics but has been overlooked or mis-classified by the distributed systems com­

munity: information revelation failure. Information revelation failure occurs when an al­

gorithm participant is instructed by the algorithm specification to reveal a piece of private

information, but the participant does not reveal this information correctly. Private infor­

mation is information that is not known to other algorithm participants and that cannot be

established or verified by other algorithm participants. This thesis shows that the feasibility

and cost of addressing information revelation failure can be different from other types of

failure and suggests incentives and design restrictions as two ways to prevent this type of

failure.

1.2.2 Faithfulness

In the spirit of systems properties like safety and liveness [Wei92], we formalize

faithfulness as the metric by which to judge an algorithm's tolerance to rationally motivated

failure. A proof of specification faithfulness is a certification that rational nodes will choose

to follow the algorithm specified by the system designer. This certification is given subject

to assumptions about the types of nodes and failure that may be present in the system.

When one can prove that a specification will be faithfully followed by rational nodes in

a distributed network, one can certify the system to be incentive-, communication-, and

www.manaraa.com

Chapter 1: Introduction 7

algorithm-compatible (IC, CC and AC). Such a system is provably robust against rational

manipulation.

Through our work on faithfulness, we also introduce the classic economic ideas

of solution concept and equilibrium behavior into traditional distributed systems failure

analysis. While our work is not the first work to explore distributed mechanism design (see

Feigenbaum [FS02]). to our knowledge, this thesis is the first work to expand the notion of

equilibrium in distributed systems to include communication and computation actions.

Our ultimate goal is show how incentives can be used to change a participant's

behavior from choosing to exhibit failure to choosing to follow the suggested algorithm.

1.2.3 Methodology to Address Rationally Motivated Failure

A main contribution of this thesis is to present a practical methodology for building

systems that can prevent rationally motivated failure expression. The methodology consists

of three parts, which we preview below.

1. Model the Environment. In this step, the designer specifies the target environment

assumptions, which dictate the node model, knowledge model, and network model.

This bundle of assumptions specifies the conditions underlying any claim of rationally

motivated fault tolerance.

2. Design, Prove, and Build Specification. The designer then constructs a new sys­

tem specification that is designed to prevent rationally motivated failure. Specifically,

the system designer should:

• Identify a subset of rational compatible behavior. The designer's goal is to pro­

vide incentives for correct behavior to participants for those intentional failures

that might be caused by this rational compatible subset.

• Specify the mechanism. The mechanism maps between node strategies and the

system outcomes. The mechanism is defined by a strategy space and an outcome

rule that specifies the actual mapping.

• Propose a suggested node strategy for each participant type.

• Guarantee that the suggested strategy is a utility maximizing strategy for all

participant types. In other words, the designer guarantees that a rational com­

patible node will exhibit rationally motivated correctness rather than rationally

motivated failure. This guarantee is a rigorous proof that assumes a particular

solution concept and holds in the chosen environment.

www.manaraa.com

Chapter 1: Introduction 8

The designer then realizes the specification with an implementation.

3. Evaluate Effectiveness, Impact , and Cost. Designers evaluate the trade-offs

required to implement a system that is robust to rationally motivated failure and

measure the cost (in messages, etc.) of the system.

1.2.4 Application of Methodology

We apply the rationally motivated failure remedy methodology to two problems.

First, we build an algorithm for the interdomain routing problem based on work by Feigen-

baum et al. [FPSS02] (FPSS). We show the enhanced algorithm to be faithful under the

ex post Nash solution concept. We implement the algorithm in simulation, evaluating and

comparing the new algorithm's message complexity with FPSS. We show that a node's

message cost when running the faithful algorithm depends on its degree (number of con­

nections it has to other nodes) and that on a real Internet topology a node may incur a

2x-100x message traffic increase over the unfaithful version of the algorithm. We show how

this overhead can be reduced to 2x-10x without serious connectivity consequences when

high-degree nodes impose a cap on their number of neighbors.

Second, we apply the rationally motivated failure remedy methodology to the

problem of distributed consensus to solve a version of what we call the Rational Byzantine

Generals problem. We design an algorithm that is faithful under the 1-partial ex post Nash

equilibrium solution concept. We implement the algorithm over a network and compare the

fault tolerance, message complexity, and scalability to MDPOP [PFP06] and a Byzantine-

fault-tolerant version of the Paxos [LamOl] protocol. Our analysis is not intended to show

the "best" algorithm; such an interpretation is not appropriate because of the unbridgeable

difference in fault models assumed by each algorithm. Rather, these comparisons convey

the relative trade-offs facing the system designer in supporting different fault models and

algorithms.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 introduces the Rational Byzantine Generals problem to help demonstrate

the multiple challenges associated with rationally motivated failure. The Rational

Byzantine Generals problem helps illustrate the problem of information revelation

failure. The chapter then examines how previous research in computer science ap-

www.manaraa.com

Chapter 1: Introduction 9

proaches this problem and how previous research provides ideas or tools that address

rationally motivated failure. The chapter closes by distinguishing avoidable rational

compatible failure from other types of failures that cannot be avoided.

• Chapter 3 formalizes the notion of rationally motivated failure. The chapter intro­

duces important concepts used later in the thesis, such as utility, type, actions, and

strategy. The chapter then introduces the mechanism as the remedy for rationally

motivated failure, comparing the centralized approach to mechanism design with the

distributed approach used in this thesis. The chapter then introduces the mechanism

equilibrium that holds in a given solution concept.

• Chapter 4 has two parts: first, the chapter defines the methodology used to address

rationally motivated failure. The second part of the chapter explicates the process

that a designer uses to show specification faithfulness. Faithfulness is as important as

the other systems correctness properties of safety and liveness in settings that contain

rational nodes. A proof of specification faithfulness is a certification that rational

nodes will choose to follow the algorithm specified by the system designer.

• Chapter 5 applies the rationally motivated failure remedy methodology to an inter-

domain routing problem based on work by Feigenbaum et al. [FPSS02] (FPSS). The

enhanced algorithm is shown to be faithful under the ex post Nash solution concept.

We implement the algorithm in simulation and compare the message complexity of

the resulting algorithm to FPSS.

• Chapter 6 applies the rationally motivated failure remedy methodology to the prob­

lem of distributed consensus. The chapter combines ideas from the MDPOP [PFP06]

and Byzantine Generals [LF82] algorithms to form a new algorithm that is faithful

under the 1-partial ex post Nash equilibrium solution concept. The algorithm is robust

to both rational and traditional failures. We implement the algorithm in a network

and compare the fault tolerance, message complexity, and scalability of the new al­

gorithm with MDPOP and a Byzantine-fault-tolerant version of the Paxos [LamOl]

protocol.

• Chapter 7 concludes and suggests future work.

Cross-Field Connection: This thesis necessarily uses concepts found in traditional

distributed systems and in mechanism design analysis. We will use these "Cross-Field

Connection" boxes to highlight overlapping ideas and language found in the two fields.

www.manaraa.com

Chapter 2

Approaches to Rationally

Motivated Failure

This chapter is divided into three parts: First, we introduce the Rational Byzantine

Generals problem that we use throughout the thesis to study rationally motivated failure.

Second, we describe related work on rationally motivated failure and explore how other

research would approach problems with characteristics similar to the Rational Byzantine

Generals problem. Third, we distinguish avoidable rational compatible failure from other

types of failures that cannot be avoided.

2.1 A New Problem: The Rational Byzantine Generals

We open this chapter by building a specific problem that succinctly demonstrates

the types of rationally motivated failures that this thesis must address. Our Rational Byzan­

tine Generals problem is based on Lamport et al.'s Byzantine Generals [LSP82] problem,

which is presented as follows:

We imagine that [three] divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals can
communicate with one another only by messenger. After observing the enemy,
they must decide upon a common plan of action. However, some of the generals
may be traitors, trying to prevent the loyal generals from reaching agreement.
The generals must have an algorithm to guarantee that: (A) All loyal generals
decide upon the same plan of action, and (B) A small number of traitors cannot
cause the loyal generals to adopt a bad plan.

The generals agree to limit their communication to be their single-word vote on

whether to "Attack" or to "Retreat". The generals agree to use Lamport et al.'s agreement

10

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 11

algorithm with oral messages to establish a consistent view of battle plan votes across correct

generals. In this algorithm, each general first directly sends its vote to all other generals

and then relays what it hears from each general to all other generals. The generals agree

to follow the majority-vote as their consensus outcome function. This outcome function

means that the battle plan receiving the majority of votes is chosen by the generals. By

agreeing on majority-vote, the generals meet Lamport et al.'s requirement that the same

robust outcome function be used by all generals.

Among other results, Lamport et al.'s work shows upper bounds on the number

of traitorous generals (L^jpJ when using unsigned messages) that can be present in an

agreement algorithm while still being able to meet the correctness conditions. Having

studied computer science while at military college, the generals know that their agreement

algorithm cannot tolerate any failures because only three generals are participating in the

algorithm. However, the generals trust each other not to fail.

We now add one seemingly innocent (but important) twist to this story: The

generals' monarch, their queen, specifies to the three generals that after observing the city

each general should vote to "Attack" if and only if they predict the city will be razed in a

combined attack, and to vote "Retreat" otherwise.

Remark 2.1. In Lamport et al. 's original problem, there is no instruction on how a general

is supposed to reveal his vote. A general is correct in revealing his vote as long as it is

consistent in unicasting the same vote to all other generals; his public vote declaration is

not tied to his private prediction of success. The content of the vote is not a correctness

concern to Lamport. It is, however, a correctness concern in the queen's problem.

This setup describes a consensus problem where the goal is to select a choice from

two candidates, "Attack" or "Retreat". The algorithm solution should satisfy the traditional

correctness conditions of liveness and safety.1 For traditional consensus the liveness and

safety conditions are:

• Liveness Conditions

LI. Some proposed choice is eventually selected.

L2. Once a choice is selected, all non-failing participants eventually learn a choice.

• Safety Conditions

SI. Only a single choice is selected.

*An introduction to specifications and their properties can be found in Weihl [Wei92].

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 12

52. The selected choice must have been proposed by a participant.

53. Only a selected choice may be learned by a non-failing participant.

Or, translated into the language of warriors:

LI. The generals eventually pick a choice from the proposed battle plans.

L2. Once a choice is made, all non-faulty generals eventually learn a choice.

Si. There is exactly one selected battle plan.

52. The final selection of battle plan was proposed by at least one of the generals.

53. Only the selected battle plan can be the choice learned by non-faulty generals.

The queen's last instruction, combined with the majority outcome rule, adds two additional

safety conditions:

54. "Attack" is selected only if the majority of non-faulty generals predicts that the city

will be razed in a combined attack.

55. "Retreat" is selected only if the majority of non-faulty generals do not predict that

the city will be razed in a combined attack.

To continue our story, the three generals approach the enemy city via different

routes and observe the enemy as the queen had instructed. Here is what the three generals

privately think:

• General 1 predicts that the city will be razed in a combined attack.

• General 2 predicts that the city will not be razed in a combined attack.

• General 3 predicts that the city will be razed in a combined attack, but that his

beloved horse will surely be killed in the onslaught.

If General 3 values the life on his horse more than his loyalty to the queen, one of

the following two scenarios may occur:

Scenario 1: A general lies about his prediction

Generals 1 and 2 follow orders and vote "Attack" and "Retreat" respectively.

General 3 predicts that the city will be razed in a combined attack and should therefore

vote "Attack". However, his love for his horse compels him to vote "Retreat". Generals 1,

2, and 3 otherwise execute the consensus algorithm correctly. The three generals select

"Retreat". This is a violation of safety condition [S5].

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 13

Scenario 2: A general lies about what he hears

Generals 1 and 2 follow orders and vote "Attack" and "Retreat" respectively.

General 3 predicts that the city will be razed in a combined attack and should therefore

vote "Attack". General 3 knows that by telling the truth about his own prediction but

incorrectly reporting what he hears from other generals, he can immediately violate the

L^ipJ upper bound on faulty participants allowed by Lamport et al.'s agreement algorithm.

General 3 fails by telling General 1 that General 2 voted "Attack", and by telling General 2

that General 1 voted "Retreat" ? Both of the remaining non-faulty generals can detect that

a failure has occurred, but neither knows which general has failed. The generals are unable

to reach consensus. This is a violation of liveness condition [LI].

Analysis of Scenarios 1 and 2

These scenarios both highlight General 3's rationally motivated failures when Gen­

eral 3 acted in his own self-interest and not according to the system specification.

• The first scenario is interesting because had the queen not imposed safety condition

[S5], the behavior of General 3 would have been correct. In Chapter 1, we briefly

introduced private information as information not known to other algorithm partic­

ipants and that cannot be established or verified by other algorithm participants.

The Byzantine Generals problem and Byzantine Fault Tolerant (BFT) algorithms

originally considered by Lamport et al. do not consider the correct private informa­

tion revelation to be part of the algorithm specification. Furthermore, in the original

problem, there is no queen to define what "correct." revelation even means. Yet, spec­

ifications can dictate such private information revelation actions and self-interested

behavior can lead to "errors" in this information revelation.

• The second scenario is interesting because it outwardly appears to be a case of tradi­

tional failure, and would have been treated as a Byzantine fault in Lamport et al.'s

original problem formulation. General 3 intentionally chose to fail not in information

revelation, but in message passing. General 3's incentives were poorly aligned with

the algorithm design. This misalignment of incentives led to an intentional failure,

which led to the collapse of consensus. General 3 might not have chosen to fail had

a different algorithm been used that, for instance, recognized and compensated the

general for the loss of the horse.
2Lamport et al. [LSP82] pictorially demonstrate this example in which a failed consensus is detected by

a non-failed participant, but not in a way that establishes who failed.

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 14

The Rational Byzantine Generals problem is a boiled-down "challenge problem"

that we solve in this thesis. Our task is to present a system design that all generals will

choose to follow, even if they have differing incentives. Borrowing the hardest aspects of

the examples in the previous chapter, this problem has the following three characteristics:

• The problem demands that participants provide private information, which is infor­

mation not known to other algorithm participants and that cannot be established or

verified by other algorithm participants.

• The problem occurs in a setting where traditional system failures may occur in addi­

tion to any added rationally motivated failure. Translating the Generals problem back

into computing, hardware may fail or bugs may arise, and a robust protocol should

be able to deal with these faults.

• The problem is distributed. In problems we wish to solve, participants can be responsi­

ble both for simple message-passing tasks and for performing portions of a distributed

computation.

We will return to the Generals throughout this thesis, proposing a protocol to

solve their problem in Chapter 6. For now, though, we return to the world of computing.

How might a system designer approach problems with these characteristics? What tools

and research can one use to address rationally motivated failure? We now examine related

work that helps us in answering these questions.

2.2 Relevant Prior Work

This thesis is a bridge between traditional research in fault tolerant distributed

systems and algorithmic mechanism design, and there are several ways that we could cate­

gorize and discuss related work. We have chosen to present related work as follows: In this

section, we examine specific research projects that are particularly relevant to this thesis.

For example, we are aware of only one paper that provably addresses rational manipula­

tion in distributed settings with private information, while also surviving traditional system

failure.

Later in the chapter, we discuss additional related work on rationally motivated

failure arranged by research area. We observe that work in historically separated research

areas tends have similar strengths and weaknesses vis a vis each's ability to address problems

with the three Rational Byzantine Generals characteristics, and we begin each section with

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 15

those observations. Additional related work will be discussed in the following chapters'

bibliographic notes.

2.2.1 Autonomous Nodes

The closest work to the types of problems considered in this thesis is Mitchell

and Teague's work on autonomous nodes in distributed mechanisms [MT02]. Mitchell and

Teague use the phrase "autonomous node" to designate a participant in a distributed al­

gorithm that has full control over the hardware and software that it uses to interact with

the rest of the distributed algorithm. In their words, these autonomous nodes are "strate­

gic agents [that] control the computation at each local node that implements part of a

distributed algorithmic mechanism."

The Mitchell and Teague work uses the example of the marginal cost mechanism

for multicast cost sharing described by Feigenbaum et al. [FKSS01]. Mitchell and Teague

start with a protocol that is susceptible to rational manipulation and propose two protocol

variants to addresses this susceptibility. Their first protocol, like our work in Chapter 5,

assumes a mixture of rational and obedient participants. Their second protocol, like our

work in Chapter 6, assumes a mixture of rational, obedient, and malicious participants.

Both of the Mitchell and Teague protocols use cryptographic signing with a central auditing

mechanism utilizing a bank to punish deviant behavior. These techniques are relevant to

designers who wish to build systems that are tolerant to rationally motivated failure.

The Mitchell and Teague work is more theoretically oriented than this thesis as it

does not describe how to build an operational system. One major scalability hurdle is the

work's reliance on an obedient central participant to act as a central checker mechanism

that audits every other agent. (In comparison, this thesis pushes distributed checking back

into the network of rational participants.) It is not obvious how one would incorporate

distributed checking functionality into their solution so that a rational participant would

still choose to participate correctly in the protocol. Nevertheless, Mitchell and Teague's

work provides an important example of a system that aims to prevent rationally motivated

failure in a problem that involves information revelation, algorithmic computation, and

message passing.

2.2.2 BAR Fault Tolerance

In earlier work on faithfulness we asked how one would build systems that tolerate

both rationally motivated and non-rational failure [SPM04, SP04]. One proposal can be

found in Aiyer et al.'s work on BAR fault tolerance [AAC+05]. Aiyer et al. present a state

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 16

machine architecture based on Castro and Liskov's Practical Byzantine Fault Tolerant state

machine [CL99] for building applications that run within networks of rational, altruistic

(obedient), and non-rational but faulty nodes. Aiyer et al. demonstrate their work to

power a peer-to-peer file backup system, similar to the system described in Castro and

Liskov [CL99]. Their tiered model initially seems quite powerful since it includes a generic

state machine that is meant to run a wide range of cooperative services. However, three

important limitations of the BAR work prevent one from applying the BAR framework to

problems like the Rational Byzantine Generals problem:

First, the BAR work provides incentives only for correct behavior in redundant

computation and message passing actions. BAR does not address the information revelation

manipulations that we described earlier in the Rational Byzantine Generals problem.3 The

BAR work prevents failures by making failure in computation and message passing actions

an irrational choice for a rational participant. However, these failures would have been

caught and corrected anyway by Castro and Liskov's underlying Practical Byzantine Fault

Tolerant algorithm.

Second, the BAR work is able to provide incentives to rational participants for

correct behavior only when rational participants assume that Byzantine failures occur in

a worst-case manner.4 This assumption breaks down in practice if a rational participant

observes non-worst-case failures where the rational participant's own deviation is profitable.

Third, BAR assumes that rational nodes participate correctly in penance and

penalty mechanisms. This is a major assumption, since these mechanisms are critical to

proving an equilibrium, and compliance in these protocols by rational nodes is not guaran­

teed. In the example and language of their state machine protocol, non-leader nodes must

be willing to pay the cost of checking and acting on received malformed penance messages.

Their model dictates that rational participants minimize costs, and costs arc defined as

"computation cycles, storage, network bandwidth, overhead associated with sending and

receiving messages, [etc.]." This means that participants may ignore any extra penalty

mechanism work since this increases a participant's cost. Worse yet, there can actually be

an incentive for one participant to ignore another's deviant behavior.5

3To readers familiar with the BAR work but confused by this claim, consider this example in the language
of the BAR work: BAR. allows a rotating leader to propose commands to be executed by a replicated state
machine. While BAR prevents other rational nodes from changing this command (by using terminating
reliable broadcast instead of consensus), nothing stops a rational leader from selfishly choosing a particular
command to execute.

4More precisely, using concepts to be defined in Chapter 3: The BAR work establishes a rational par­
ticipant's equilibrium behavior only if it is assumed that Byzantine nodes fail in a manner that maximally
damages a rational participant's expected utility.

5For readers familiar with the BAR work, an example is that reported deviating nodes are kicked out of
the BAR file backup system. But since there is a cost of replicating data, a reporting node may tolerate a

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 17

These three limitations stand in the way of a designer wishing to use the BAR

state machine system as a basis for a rationally motivated fault tolerant system. The work

that we describe in Chapter 6, while not as general as a state machine, does address these

limitations.

2.3 Related Research: Distributed System Fault Tolerance

We now discuss related work by research area, starting with traditional work in

distributed system fault tolerance. This area of research studies how to build systems that

are robust to different types of failures in computation and message passing. Research in

this area historically does not address private information revelation.

There are two important characteristics of conventional approaches to distributed

system fault tolerance. The first characteristic is that conventional approaches are built

around fault expression, rather than fault cause. Designers may classify a node as correct

or faulty without giving thought as to why the node is correct or faulty. The second

characteristic is that conventional approaches are reactive rather than preventative. The

usual goal in building fault-tolerant systems is to identify faulty nodes and recover from

failures they introduce, typically by excluding faulty nodes from future participation.

Failure Expression

Table 2.1 shows a distributed systems failure model taxonomy collected by Schnei­

der [Sch93] (original citations omitted). We note that this is a taxonomy of failure expres­

sion, i.e., this is a listing of how faults are exhibited. Schneider argues that a failure

expression deserves an entry in this failure taxonomy if the feasibility (what classes of prob­

lems can be solved?) and cost (how complex must the solution be?) of addressing the

failure are distinct from other members on the taxonomy. For example, we reflect that

the list omits insertion failures, defined as "A processor fails by transmitting a message

not dictated by a specification," presumably because the feasibility and cost of treating the

failure was thought by Schneider to be equivalent to one of the other failure types. A failure

can always be labeled as Byzantine in that Byzantine failure subsumes any other failure

that appears on the list, or that we might add to this list. For this reason, any observed

distributed systems failure can be classified by this taxonomy. For now, we observe that

the information revelation failures that we saw earlier in the Byzantine Rational Generals

problem might be classified as a Byzantine failure under Schneider's original taxonomy,

mildly deviant node when the deviant node also acts as the reporting node's storage location.

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 18

Failstop A processor fails by halting. Once it halts, the processor remains
in that state. The fact that a processor has failed is detectable
by other processors.

Crash A processor fails by halting. Once it halts, the processor remains
in that state. The fact that a processor has failed may not be
detectable by other processors.

Receive Omission A processor fails by receiving only a subset of the messages that
have been sent to it or by halting and remaining halted.

Send Omission A processor fails by transmitting only a subset of the messages
that it actually attempts to send or by halting and remaining
halted.

General Omission A processor fails by receiving only a subset of the messages that
have been sent to it, by transmitting only a subset of the mes­
sages that it actually attempts to send, and/or by halting and
remaining halted.

Byzantine Failure A processor fails by exhibiting arbitrary behavior.

Table 2.1: Failure expression taxonomy due to Schneider [Sch93] (original citations omitted).

Failure Cause

One can use the taxonomy in Table 2.1 to answer the question, "How did the

participant fail?" The taxonomy cannot be used to answer the question, "Why did the

participant fail?" To answer the "why" question, computer scientists must examine the

failure cause. There are two categories of failure cause, defined as failure due to:

• unintentional erroneous behavior. A failure expression is due to chance, nature

(cosmic rays), bugs in a specification, bugs in an implementation, etc. A failure in

this class is one where the failing participant, if given the choice, would either choose

to avoid the failure or has no concept of "choosing" failure vs. no failure.

• intentional behavior. A failure expression is the result of a participant choosing to

fail.

Computer scientists sometimes define intentional failure to be a synonym for ma­

licious failure. For example, the security research literature is particularly concerned with

this type of intentional failure. Designers are accustomed to defending their systems against

a "worst-case" adversary who is imagined to exhibit a particularly heinous failure pat­

tern [Sch95, Nee93]. The modus operandi for dealing with Byzantine failure, regardless of

cause, is to build a Byzantine fault tolerant algorithm [LF82]. These algorithms typically

rely on redundancy and/or cryptography and provide hard guarantees about algorithm

correctness when the number of faults is bounded [CL99].

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 19

Failure Expression Failure Cause

failures subsume

Omission
failures subsume

Crash Failstop

failures.

Byzantine
failures subsume

Insertion
failures.

failures subsume

Information
failures.

CD
•o o c

c
<D

sz
5
t -
3 o o o
c
CO

o
3
t o ­

co :
c o
o **

' * = CD
«= 3

malicious

rational

to

o ^ / - ~
"I CD (erroneous
C "O ^ -

y s >
CO

1) 1

cu
£1

Figure 2.1: Failure expression and failure's underlying cause. Information failure and faults
due to rational behavior are not typically studied in distributed systems but are the subject
of this thesis.

Rational = Byzantine?

Are existing Byzantine fault tolerant methods sufficient to address rationally moti­

vated failure? Byzantine failure equates to arbitrary failure, where arbitrary is interpreted to

mean any. By casting such a wide net, we might expect that practical tools and techniques

for building Byzantine fault tolerant (BFT) distributed systems, such as those proposed by

Castro and Liskov [CL99], are the most appropriate ways to deal with rationally motivated

failure. However, this is not the case. Even in building Byzantine fault tolerant algorithms,

there are advantages in specifically addressing rationally motivated failure:

• The set of Byzantine fault tolerant algorithms can be expanded. Traditional

BFT techniques are reactive and rely on redundancy, cryptography, and verification

techniques to tolerate failure. However, none of these tools can be used to address

information revelation failures that we demonstrate in the Byzantine Rational Gener­

als problem. This means that existing traditional so-called Byzantine Fault Tolerant

algorithms are not tolerant to information revelation failure. There is no contradic­

tion here, since all of these BFT algorithms either do not direct participants to reveal

private information, or if private information is elicited (as in the original Lamport et

al. Byzantine Generals problem), then there is no guidance as to the actual content

of the revealed information.

• The robustness of Byzantine fault tolerant algorithms can be increased.

Claims of Byzantine fault tolerance are bounded by the number of simultaneous fail-

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 20

ure expressions. The techniques introduced in this thesis can reduce the number of

simultaneous faults that occur due to rational behavior. The result is that the BFT

algorithm has more "wiggle-room" to tolerate faults from other causes.

• The cost of Byzantine fault tolerant algorithms can be decreased. Reducing

the number of failures can also make the actual execution of a BFT algorithm more

efficient. Several BFT algorithms treat correct behavior as the common case, running

faster and with less overhead when there are fewer faults (e.g., Kursawe's Optimistic

Byzantine Agreement [Kur02] and FaB Paxos [MA05]).

Example Application: Seti@Home Errors

When a protocol makes no information revelation demands on participants, con­

ventional BFT approaches can be used to address rationally motivated failure, albeit at some

increased cost. The Seti@Home "fake work packets" problem described in Chapter 1 is an

example of a computation manipulation. To remind ourselves of that example, Seti@Home

is a distributed computation system where participants run clients that download raw data

from a server, perform computation, and upload finished "work units" to the server. There

is a scoring system that rewards users with (otherwise meaningless) points tied to their

level of work submission. Some participants used a hacked client to upload junk, labeled as

finished work, to obtain a high score on the "packets submitted" leader-board. [KahOl]

In this system, any user's work packet can be verified by any other participant in

the system. To address the problem of a participant falsely claiming completed work to

drive up their leader-board score, the Seti@Home team changed their software to replicate

work packets across multiple clients. The revised client software verifies work with other

participants and updates a central leader board only when these packets agree. Three out

of four participants must now agree before credit is awarded.

This approach had several drawbacks: the throughput of the system was reduced

by more than 75% as participants were forced to triple-check each others' results [Use05].

Moreover, in the revised system participants keep track of the number of successfully veri­

fied work packets, which equates to their submitted leader-board score. As of this writing,

one can download newly hacked clients that submit inflated scores [KahOl]. These client

manipulations have anecdotally reduced the incentive for some honest participants to par­

ticipate [Use07].

We see several lessons in this example. One lesson is that in a system with no

private information, it is possible to rely on traditional Byzantine Fault Tolerance tech-

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 21

niques such as replication to address a rationally motivated failure. However, it may not

be optimal: the robustness of Byzantine fault tolerant algorithms can be increased and the

computational cost of some Byzantine fault tolerant algorithms can be decreased by specifi­

cally addressing rationally motivated failure. In the Seti@Home case, a flawed leader-board

implementation created a perverse incentive to damage the overall system. An alternate so­

lution that simply removed the leader-board might actually increase throughput, assuming

that leader-board manipulations are the sole cause of bad packets in the system.

2.4 Related Research: Failure in Mechanism Design

Mechanism design (MD)6 is an area of economics that studies how to build sys­

tems that exhibit "good" behavior (for some designer-defined notion of "good") when self-

interested nodes pursue self-interested strategies in decision problems: within systems, de­

cision problems include leader election [Lam98], scheduling [LL73], and bandwidth or CPU

resource allocation [SNP+05].

MD research focuses on eliciting truthful information from algorithm participants.

Work in mechanism design historically has not studied the implementation problem of

turning a mechanism into a protocol, let alone any distribution of a mechanism, or operation

in the face of traditional systems failure. These areas have started to receive attention

as computer scientists have become more interested in rational behavior. As part of his

dissertation, Parkes [ParOl] reviews research from both economics and computer science

that considers how bounded computation, communication, and a participant's ability to

calculate a rational strategy can affect mechanism design. This research is related to work

on algorithmic mechanism design, which studies how to build mechanisms that retain useful

game-theoretic and computational properties.

Algorithmic mechanism design (AMD) [NR99, NROO] places a special emphasis

on a mechanism's computational tractability. As in MD work, AMD research typically

assumes a obedient and failure-free networking infrastructure. AMD focuses on the study

of centralized mechanisms, where participants report their complete private information

to a special trusted participant (a center) that runs a decision algorithm. In concluding

their seminal work on AMD, Nisan and Ronen noted the "set of problems" that come in

implementing a decision problem with rational nodes in a real network [NR99], suggesting

that distributed computation and message encryption could be useful tools, but leaving
6Concepts and terminology from mechanism design that are useful for our thesis are described in Chap­

ters 3 and 4. The reader can find alternate introductions to mechanism design in Jackson [JacOO] or
Parkes [ParOl].

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 22

such problems open to future work.

Contemporary with early AMD developments, Monderer and Tennenholtz [MT99]

present the earliest work dealing with truthful private information revelation and rationally

motivated failure in message passing. This paper challenges the MD/AMD assumption of

obedient network communication. Monderer and Tennenholtz recognize that messages from

a participant to a decision-making center may be carried by other rational participants who

have a vested interest in the decision. These rational participants may inspect, drop, or

change messages that they are supposed to route to the single center. Monderer and Ten­

nenholtz present a simple encryption scheme that makes it weakly harmful for participants

to drop or change such messages, assuming certain restrictive beliefs are shared among the

participants.

Distributed algorithmic mechanism design (DAMD) [FPSS02, FS02] considers the

MD/AMD problem in a network setting with no single center, where computation is dis­

tributed across the self-interested participants who also control the message paths. The

extension from AMD to DAMD was first explored by Feigenbaum et al. [FKSS01, FPSS02,

FPSS02].7

Feigenbaum, Papadimitriou, Shenker, and Sami [FPSS02] (FPSS) proposed a rout­

ing protocol to prevent rational participants from lying about their transit costs in the prob­

lem to find efficient, i.e., lowest cost, routes between nodes. Their work proposes a payment

scheme that can be used to pay transit nodes for relaying traffic along lowest cost paths.

The protocol incorporates a Vickrey-Clarke-Groves mechanism [Vic61, Cla71, Gro73] to

guarantee truthful private cost declaration from rational participants. Their resulting pro­

tocol makes certain assumptions, including the impractical requirement that participants

otherwise follow the distributed algorithm without deviation. We save further discussion of

this work for Chapter 5 where it serves as the basis for a new protocol that addresses these

limitations.

Feigenbaum, Ramachandran and Schapira [FRS06] recently re-visited the inter-

domain routing problem [FPSS02] to propose a solution to a modified problem based on

"next-hop" policy routing. Instead of ensuring that packets are routed along lowest-cost

paths, each participant decides among available routes solely based on the routes' next hops.

With this change, the authors show that their algorithm is immune to the types of rational

manipulation that were not addressed in FPSS.

7Feigenbaum et al. [PSS07] observe that a number of early networking papers that invoke game theory
are related to DAMD. This makes sense, as networking problems are inherently distributed and must have
reasonable complexity. More importantly, networking is a natural area in computer science where limited
resources are under contention from autonomous self-interested participants. Even so, the minority of game-
theoretic networking papers concern distributed decision problems, and even fewer address failure.

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 23

2.5 Related Research: Failure in Networking

Networking researchers have long been interested in designing "fair" systems that

work with rational participants and in evaluating existing systems in the presence of selfish

behavior. Most of the work in game-theoretic networking focuses on optimizing systems

(e.g., Gibbens and Kelly's research on resource pricing [GK99]) or analyzing performance

(e.g., Roughgarden and Tardos's work on the cost of selfish routing [RET02]) and is not

directly related to this thesis. We are interested in work that addresses failure. Within

networking, these failures equate to avoiding the responsibility to route or forward others'

packets or finding creative ways to make one's own packets cheaper or faster.

2.5.1 Game-Theoretic Reasoning

Feldman et al. [FCSS05] examine the problem of "hidden-action" in packet for­

warding. They observe that endpoints in a network rely on intermediate nodes for packet

forwarding, and that rational intermediate nodes may choose to disrupt the packet flow.

The authors construct a model of the problem to show how incentive-laden all-or-nothing

contract offers can be used to overcome the hidden-action problem. Feldman et al. apply

their work to packet forwarding in the FPSS [FPSS02] interdomain routing protocol to

demonstrate correct packet forwarding as a Nash equilibrium in the absence of external

monitoring. They also show that correct packet forwarding is a dominant strategy equilib­

rium in the presence of monitoring. Both of these proofs - in the presence and absence of

external monitoring - require the strong assumption that participants otherwise follow the

algorithm, which is an assumption that we cannot make in this thesis.

Zhong et al. [ZCY03] propose Sprite, a virtual currency-based system made for

mobile/ad-hoc networks to stimulate cooperation in message forwarding tasks among self­

ish participants. Unlike previous reputation-based approaches (e.g., routing research by

Marti et al. [MGLBOO], or the CONFIDANT protocol by Buchegger and Boudec [BB02])

or solutions that use secure communications hardware (e.g., the Terminodes/Nuglets work

by Buttyan and Hubaux [BH03]), Sprite uses a centralized trusted node that acts as an

accountant and behavior enforcer. Zhong et al. define a game that includes the actions

of forwarding messages and reporting received messages, and show that in their game, an

optimal participant strategy is to play the game truthfully. The authors implement their

system and provide some evaluation to document the overhead of their approach.

Mahajan et al. [MRWZ04] report on challenges encountered in directly applying

8Using the language of Chapter 4 and defined in our earlier work [SP04], to solve a hidden-action problem
is to show that a system is communication compatible.

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 24

results from traditional game theory to problems in multi-hop routing and packet forward­

ing: They report on the asymmetry problem that arises when using a barter system or

equilibrium forwarding argument, where nodes at the edge of a network cannot provide the

same packet forwarding or routing value that they demand. They also consider problems

with virtual currency, such as balancing and control and the larger problem that a closed

virtual currency cannot express real-world costs and benefits.9

The authors also bring up concerns about the types of mechanisms used in Feigen-

baum et al. [FS02, FPSS02] and later in this thesis. Namely, Mahajan et al. point out that

publication of private information can be a competitive concern for future interactions when

information is used later to hurt the revealing participant. For example, by revealing true

costs for routing packets, a participant in a routing algorithm may be revealing cost-of-entry

information to competitors. Finally, Mahajan et al. pose a set of theory-meets-systems ques­

tions concerning the (im)possibility of global identities, the instability of systems affecting

game theoretic results, and the costs of implementing the system (run-time overhead, re­

quired infrastructure, etc.) vs. the potential benefits. While these are all valid concerns, the

authors' primary disappointment is that game theory offered few off-the-shelf silver bullet

for their particular routing problems. We believe, however, that elements of game theory

can be applied in ways to further the design of robust distributed systems, and this thesis

is predicated on that belief.

2.5.2 Overlay and Peer-to-Peer Networks

Some of the most interesting attempts to address rationally motivated failure have

been developed in successive generations of overlay and peer-to-peer networking programs.

A large class of this work deals with free-riding participation problems. A lack of participa­

tion is an individual rationality failure, which is the economics term that describes a user's

unwillingness to participate in a mechanism based on its expected reward. The failure is

similar to the failstop/crash studied in traditional systems, except that the failure may oc­

cur even before a system starts or the participant set is known since potential users simply

choose not to participate in an algorithm. In relation to this thesis, we look to overlay

and peer-to-peer networking work for ideas on how to ensure correct participant behavior

even when the initial system design seems to discourage correct participation by ratio­

nal participants. Researchers have proposed probabilistic audits (either by trusted third

parties [NWD03] or by algorithm participants [CN03]), forced symmetric storage relation-

9These same problems seem to plague every virtual currency system that we have examined, from
Spawn [WHH+92], Mariposa [SAL+96], Mojonation [McCOl], to more recent work like Sprite [ZCY03],
Bellagio [ACSV04], and Tycoon [LRA+05].

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 25

ships [ABC+02, CMN02], or token payment [McCOl, IIKP02] to encourage participation.

Most of these attempts include simple game theoretic ideas: Kazaa [Net07] en­

couraged global tit-for-tat relationships with its participation metric. MojoNation [McCOl]

provided a virtual economy to encourage participation; one gained currency by sharing

files, disk space, and bandwidth. Unfortunately, many users found that the currency was

not expressive or well-managed. The incentives were not effective in encouraging contin­

ued participation as many users reportedly did not understand how to value the artificial

currency [McCOl]. BitTorrent [Coh03] simplified the tit-for-tat into a trading game with

centralized trusted control (via the tracker component), wherein participants receive pieces

of file faster when they send out other correct pieces of the same file. While its creator has ar­

gued that BitTorrent's incentive mechanism is responsible for its success [Coh03], researchers

have shown manipulation opportunities in the protocol [LMSW06, Tor07, PIA+07, LNKZ06]

and have argued that the protocol's built-in altruism is the reason for its success, and that

its incentives actually encourage manipulation [JA05].

Peer-to-peer research has promoted the threat of the Sybil attack, which occurs

when a system relies on identity but has no trusted identity verification mechanism.10

Douceur [Dou02] first coined this term to describe a participant who spoofs multiple identi­

ties in order to extract better service from a distributed algorithm. In peer-to-peer systems,

the basic Sybil problem is often related to bootstrapping: a new participant may have

nothing to offer the system but must have an incentive to join the system. Participants can

create many identities that free ride any initial incentive. Douceur poses some conjectures

about the impossibility of fully overcoming Sybil attacks while Cheng and Friedman [CF05]

attempt to formalize the ideal property of "sybilproofness."

An interesting approach to encourage participation and counter Sybil attacks in

peer-to-peer networks is to introduce a distributed reputation system. A reputation system

provides a participation score for each participant based on each's dealings with other par­

ties. Reputation systems do not remove underlying opportunities for manipulation, but the

goal is to make it difficult for a "bad" participant to receive good service. Representative

research includes Resnick et al. [RKZFOO], who describe specific manipulations that can oc­

cur in reputation systems. Kamvar et al. [KSGM03] present EigenTrust, which uses notions

of transitive trust to reduce the effect of false reputation claims from untrusted participants.

Friedman et al. [FRS07] study manipulation-resistant reputation systems and present a sys­

tem that induces honest reporting of feedback in certain settings, and additionally study a

l 0Problems of identity verification have confounded researchers for at least 1900 years before being con­
sidered by computer systems designers; one ancient example is the Ship of Theseus paradox [Plu75] found
in the work of the Greek philosopher Plutarch.

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 26

number of practical implementation issues. Cheng and Friedman [CF05] show under what

conditions reputation systems may be expected to recover from Sybil attacks.

Computational game theorists have also turned their attention to participation

problems in peer to peer systems. The models used in these works tend to be too abstract

to be used directly by systems practitioners. Systems designers should look this work as a

source of interesting ideas for combating participation failure, rather than an off-the-shelf

solution. One reason for caution is that these works tend to prove Nash equilibria, which is

probably too strong of a knowledge assumption as we show in Chapter 4. Representative

papers include:

Feldman et al. [FLSC04] study free riding in peer-to-peer systems with collusion,

zero-cost identities, and traitors. They model such systems as a prisoner's dilemma prob­

lem [FT91] and propose a simple decision function that serves as the basis for a tit-for-tat

incentive scheme. The authors show through simulation that their techniques can drive a

system of strategic users to nearly optimal levels of cooperation.

Friedman et al. [FHK06] and Kash et al. [KFH07] study systems that use virtual

currency (scrip) to reduce free riding by encouraging good Nash equilibrium behavior. With

respect to failure, they examine the effect of a "monetary crash," where virtual currency is

sufficiently devalued so that no agent is willing to perform a service. They further examine

the effects of altruists and money hoarders on the performance of the system, and how these

behaviors affect monetary crashes.

Aperjis and Johari [AJ06] solve participation failure by formulating peer-to-peer

file sharing as a barter economy. In their work, a price is associated with each file and

participants exchange files only when each user can provide a file that is desired by the

other party. Their formulation solves the free-riding problem, since uploading files is a

necessary condition for being able to download. They characterize the Nash equilibria that

occurs in this game and show that the Nash equilibrium rates become approximately Pareto

efficient as the number of users increases in the system.

TCP Hacking

Not all rationally motivated networking failures are overcome with game theory.

The faults observed by Savage et al. [SCWA99] described in Chapter 1 occur because of a

manipulation of private information in the system. To remind ourselves of the example,

performance-hungry receivers in the TCP protocol can manipulate their partner's sending

rate at the expense of other network users. A receiver provides an acknowledgment message

(ACK) to the sender, and the receipt of this ACK determines the sender's outgoing data

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 27

rate. Because a TCP sender always trusts the receiver's ACK, a manipulating receiver can

force a sender to send data more quickly than is fair in a multi-user environment.

The private information in TCP is the packet acknowledgment message: while the

sender can form an expectation of this private information (e.g., "If I didn't send a packet,

you could not have ACK'd the packet"), the manipulation studied by Savage occurs in the

post-transmission moment when the receiver is the only party that knows if its TCP stack

has received and processed a message.

Savage et al. propose fixing TCP's design by removing the reliance on private

information. In their modified TCP, receivers must echo back a random number provided by

the sender in each packet. Effectively, this eliminates the dependence on private information

in the algorithm. Without labeling the initial failure as a rationally motivated fault, Savage

et al. effectively remove the opportunity for manipulation. This is a fine way to address

rationally motivated failure: simply get rid of the opportunity for failure! However, this

approach only goes so far: in some algorithms (such as the Rational Byzantine Generals)

there is an inherent dependence on the private information of each general's opinion that

cannot be removed without changing the problem.

2.6 Related Research: Security

A growing body of work studies secure private algorithms through the use of

cryptographic secret sharing [Sch95]. Part of the motivation for secret sharing is to overcome

partial failure: a participant splits and shares a numerical secret s t o n other participants,

so that any m < n of them may reconstruct the secret. Even if n — m participants are

"bad" and do not cooperate, m "good" participants may cooperate to learn s. This work

is similar to our thesis in that secret sharing requires private information revelation, but

differs from our thesis in that secret sharing-based systems generally assume participants

wish to minimize revealed private information but have an interest in the correct system

outcome. In contrast, we are concerned with participants that reveal untruthful private

information to steer the system outcome to an incorrect but selfishly beneficial outcome.

McGrew et al. [MPS03] generalize a non-cooperative computation framework by

Shoham and Tennenholtz [ST03] where every participant has the mutually-exclusive goal

of wishing to be the only participant to compute a function of participants' inputs, but

with the caveats that its own input remains private and that the participant learns the

inputs of other agents. Addressing the same problem, Halpern and Teague [HT04] present

randomized mechanisms using secret sharing for rational participants that wish to compute

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 28

a multiparty function. Participants' utility is directly linked to how much information they

are able to learn about a secret relative to the amount of information discerned by other

participants. Gordon and Katz [GK06] present an alternate technique for secret sharing

among n rational players that removes the involvement of tbe third party dealer present in

earlier work. All of these works rely on secret sharing for some degree of fault tolerance.

In the context of secret sharing and multiparty computation [GMW87], Abraham

et al. [ADGH06] study joint strategies where no member of a coalition of size up to k can

do better than an equilibrium strategy, even if the whole coalition defects from equilibrium

play. The authors show that such k-resilient Nash equilibria exist for secret sharing and

multiparty computation, provided that players prefer to learn information over not learning

information.

Izmalkov et al. [IML05] address the problem of rational behavior in secure multi­

party computation. Their goal is to create a rational secure computation protocol that is

secure even when all players pursue selfish interests. They show that any mediated game

with incomplete information can be rationally and securely simulated with a particular

extensive form game known as a ballot-box game, assuming that communication channels

can be restricted.11 Lysyanskaya and Triandopoulos [LT06] take an alternate approach to

solving the same problem. In contrast to Izmalkov et al., Lysyanskaya and Triandopoulos

use standard communication channels, allow for the existence of covert channels and make

assumptions that participants have an incentive to participate in the protocol and to reveal

private information truthfully.

Secret sharing has recently been used to enable private auctions. Brandt and

Sandholm [BS04] studied the problem of building distributed auctions so that bidder's

valuations remain private, while still retaining the property that the auction awards an item

to the highest bidder. Their distributed algorithms tolerate failure by using the recovery

properties of secret sharing.

2.7 Reflections on Related Work: W h a t is Rational?

Whether one is interpreting related work or designing a new system, it is important

to clarify what one classifies as rational behavior. It is meaningless to claim that a system

"addresses rational behavior" or "overcomes rationally motivated failure" without defining

a set of behaviors as "rational" and the environment in which such a claim holds. In the

following two chapters, we formalize rationally motivated failure and what it means to define
uThe communication assumptions in Izmalkov et al. are similar to the assumptions we make in Chapter 6

to prevent collusion with exogenous payments via hidden channels.

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 29

the environment where such a claim can hold. In this last section, we distinguish failures

that can be addressed as rational compatible failures.

2.7.1 Rational Compatible Behavior

In the introduction to this thesis, we wrote that rational behavior is entirely pre­

dictable assuming that one can correctly model rational participants. On one hand, this

predictability is powerful: a designer simply "designs for the participants", making sure

that participants' individual objectives are satisfied when they correctly follow the system

specification. On the other hand, the task of modeling rational participants is equivalent to

predicting the future — that is, to anticipate the demographics of users who will participate

in a distributed system.

Moreover, even if one can predict future rational behavior, the behavior may be

incompatible with the design goal. To use a real life example, it is well known that the

Recording Industry Association of America (RIAA) opposes illegally shared music. If a

system designer wants to build a file sharing system that facilitates on-line piracy and

expects the RIAA to participate, it is not hard to predict the RIAA's rational behavior will

be an attempt to destroy the system. This extreme example highlights the two types of

rationally motivated failure behavior as seen by the system designer:

• compatible rational behavior can be addressed through incentives and the system

design techniques discussed in this thesis, so that participants do not exhibit rationally

motivated failure and the system operates as the designer intends.

• incompatible rational behavior is behavior that cannot be addressed without also

sacrificing the intended system goals.

We illustrate this difference by considering the traditional distributed systems

world view, as shown on the left-hand side of Figure 2.2. In the traditional view, failure

expressions are attributed to either unintentional or malicious behavior. A more precise

world view is shown on the right-hand side. This new breakdown allows for rational incom­

patible behavior, as well as the possibility of irrational behavior that cannot be explained

by some view of rationality. Finally, there is the category of rational compatible behavior.

This last category of rational behavior is the only failure cause that designers can hope

to address. In theory, all failure expressions due to rational compatible behavior can be

prevented. However, in systems practice, only a subset of these behaviors are addressed

due to limitations in modeling, or in the ability or willingness of the system designer to

accommodate a range of rational participants.

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 30

Irrational

• d \Rational - Incompatible

\

/Rational - Compatible

Unintentional -"*™""~ Unintentional"*™

Figure 2.2: The failure cause pie. On the left is the old systems world view, where
failure expressions are attributed to unintentional behavior or to malicious behavior (where
malicious is viewed as synonymous to intentional). On the right is the world view proposed
by this thesis. All failure expressions due to compatible rational behavior can be prevented.
In practice, due to limitations in modeling and the will of the designer, only a subset of
these motivated behaviors are addressed in a system. The relative sizes of the pie slices will
depend on the system goals, design, and participants.

Remark 2.2. We are extremely hesitant to ascribe failure to irrational behavior; in the

real world, even most suicide bombers believe that they are acting rationally and so their

behavior should be classified as rational incompatible behavior. However, we cannot preclude

the possibility of a participant who fails intentionally, but who knowingly is not seeking

to better his/her outcome in a distributed algorithm. While our definitions allow for this

possibility, our feeling is that in practice most malicious behavior should be classified as

rational incompatible behavior. We maintain the distinction only to observe that rational

incompatible behavior could be addressed by sacrificing the intended system goals, whereas

irrational behavior can never be addressed. The distinction does not matter from a system

fault-response perspective as we address irrational and rational incompatible behavior with

the same traditional (Byzantine) fault tolerance techniques.

Remark 2.3. For the remainder of this thesis, the ambiguous terms rational and rational

behavior will strictly refer to rational compatible behavior. This thesis does not add insights

on how to address rational incompatible behavior, irrational behavior, unintentional behavior

or rational compatible behavior that is not addressed by the system designer — failures due

to these causes are left to be treated with traditional Byzantine Fault Tolerance (BFT)

techniques.

2.7.2 Limitations of Rational Behavior

There are a few types of behavior that we do not study in this thesis, and (unless

noted) are not studied by the aforementioned previous work. This thesis will treat these

Malicious

file:///Rational

www.manaraa.com

Chapter 2: Approaches to Rationally Motivated Failure 31

behaviors as rational incompatible behavior.

Collusion

Collusion is the coordination of two or more parties to act as one participant.

The examples in this thesis will treat collusion between participants as a form of rational

incompatible behavior. We note that the relative anonymity of the Internet, combined with

partnering and communication restrictions such as what we build in Chapter 6, may help

reduce collusion opportunities. Similarly, we do not contribute to the problem of addressing

Sybil attacks [Dou02], where a single participant claims to be multiple participants that

collude with each other. All of the examples presented in this paper assume that each

participant is acting in its own independent self-interest.

Repeated Games

The examples in this thesis do not consider the effects of repeated games on partic­

ipant behavior. A repeated game is a series of decision problems, in which a user can observe

and learn from one decision problem to reason about strategy in a successive iteration of

the decision problem. For example, Afergan [Afe03] studies repeated games in networks

and has shown that how the equilibrium strategy presented in Feigenbaum et al. [FPSS02]

does not hold in a repeated setting. This is discussed further in Chapter 5.

From the set of rational compatible behaviors, we further exclude participants who

seek to damage other users as their primary goal. These participants may exist in a repeated

game, where a participant may be willing to hurt itself in the short-term in order to drive

a competitor away in the future. Brandt [BW01] labels these participants as anti-social,

since their happiness with an outcome is based on how damaging the outcome is for other

participants.

www.manaraa.com

Chapter 3

Rationally Motivated Failure

Up until this chapter, we have been working with an informal definition of rational

behavior as the subset of intentional behavior that occurs when a participant aims to better

its outcome in a distributed algorithm. This chapter formalizes the notion of rationally

motivated failure. We then move into the concepts needed to describe the remedy to such

failure, such as the mechanism. The language and definitions introduced in this chapter

will help us in the remainder of the thesis as we make claims of faithfulness as the specifi­

cation property that guarantees that rational compatible participants will follow a correct

implementation of the specification.

3.1 Preliminaries

A distributed system is composed of a set of participants that interact with the

system through their computational proxies known as nodes.

Cross-Field Connection: For those readers familiar with distributed systems: We

stress our break from the traditional view that a node is a self-contained device that is

supposed to implement a central designer's specification. In our world, motivated partic­

ipants (people) actively direct their nodes to act according to the participant's wishes.

For those readers familiar with mechanism design: The participant is the rational agent

while the node assumes the duties of an agent's proxy in an indirect mechanism. The node

may also implement part of a distributed mechanism.

In this thesis, we assume that the set of participants and nodes is known at the

start of the system; this thesis is not concerned with online mechanism design where par­

ticipants can enter and leave the system during normal execution. We also assume that

32

www.manaraa.com

Chapter 3: Rationally Motivated Failure 33

the participant-node relationship is one-to-one, meaning that each participant controls ex­

actly one node. If there are n participants in the system, there are n nodes in the system

indexed i = l,...,n. These nodes communicate with each other via a network whose de­

tails will be defined for a particular problem instance. The nodes are modeled using state

machines [Wei92]. A node's state captures all relevant information about its status in a

system. It may include received messages, partial computations, private information about

its participant, and derived or estimated knowledge about other nodes, participants, and

the system. We will refer to the system outcome as the consistent snapshot of node states at

some designer-specified snapshot point. We will denote a particular system outcome, chosen

from the world of possible system outcomes as: o\ 6 O.

3.2 Utility and Type

Participants can have preferences over the range of system outcomes. These par­

ticipants have a type, which is the smallest set of information that completely determines

the participant's utility function. The utility function rationalizes preferences for different

system outcomes. The utility of a particular outcome is defined as the relative rating of

that outcome as calculated by the participant using its utility function.1

Example. A participant's type in an auction includes the participant's private estimate

of its value for a particular item, which dictates the utility on the outcomes of winning or

losing an item at various closing prices.

Example. In the Rational Byzantine Generals problem from Chapter 2, a general's type

includes all information that will affect his preference for the consensus outcomes of "Attack"

or "Retreat". For example, General 3's type includes his value for the horse and his private

prediction of the chance of a successful attack.

Remark 3.1. The concept of participants' type is problem-specific. For a silly example in

the Rational Byzantine Generals world, the information that determines a general's utility

for various battle plan consensus outcomes is (probably) different from the information that

determines the general's utility for various foods in the problem of choosing what the generals

should eat for dinner. This example illustrates that the sets of information defined by a

participant's type and its private information are not equal. The concept of type will be

*We assume that participants are able to calculate their utility for particular system outcomes, perhaps
by using an economic analysis or a felicific calculus [Ben23]. We believe that the concepts introduced and
used in this thesis apply even when participants are bounded in their rational decision making (cf. bounded
rationality [FT91]) but we do not study those limitations in this thesis.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 34

important later in this chapter when we consider incentive compatibility, which will be

defined in terms of truthful revelation of type.

Remark 3.2. Note that there is no way for another participant to be certain of another

participant's type or private information. Private information never becomes non-private

information; even if a participant announces its private information, there is no way for an­

other person to ensure that this information is truthful. (As a silly example, if a participant

claims that her favorite color is blue, there is no way to know if this is the truth.)

We denote type using the symbol 9. It is convention that the type of participant i

is often denoted 9i, but there is not necessarily a unique type for every agent. Since

type determines a participant's utility function, and since a utility function determines a

participant's utility for a particular outcome, full utility statements are written in terms of

type: Ui(o\; 9i) (read: the utility of participant i for outcome o\, given that participant i has

type 9i). This writing is precise, because it allows for utility statements such as Uj{o\; 9i),

Uk(oi;8i) where all three participants i, j , and k would have the same type i, and thus the

same utility value for o\ or any other system outcome. In this thesis, we assume that a

participant's type is well-defined and does not change over the course of a system.

Preference orderings are expressed via a preference relation (denoted >- or -<), and

are rationalized with a participant's utility function. Thus, we say that participant i prefers

outcome o\ to outcome 02, written o\ >- 02, if and only if Ui{o\; 0,) > 1*1(02; 8i).

Utility can be expressed in terms of cardinal utility and ordinal utility. Most of

the examples in this thesis will assume cardinal utility; work using ordinal preferences is

discussed in this chapter's bibliographic notes. When using ordinal utility, a participant can

state the relative preference ranking of one outcome vs. another outcome, but cannot make a

statement expressing the relative strength of the preference. In contrast, when using cardinal

utility, a participant assigns a number to each outcome, which allows statements about the

relative strengths of preferences for outcomes. While there is no well-established unit of

utility, it is more convenient to pick a unit that is both transferable among participants and

is meaningful outside of the distributed system. For the rest of this thesis, we assume that

cardinal utility is measured in a monetary currency (e.g., Euros), and that all participants

are able to express their utilities in this monetary currency. This assumption is backed

by the assumption of participants' quasi-linear utility functions. The assumption of quasi-

linear utility functions means that utility can be transfered between agents via monetary

transfers by using a payment function p(-)?

2We denote a function x with notation x(-) when it might be confused, such as in this case where we
want to distinguish payment function p () from some scalar payment p or price p.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 35

Definition 3.1 (Quasi-linear utility function). A quasi-linear utility function for agent i

is a mapping of each outcome o e O to a utility value expressed of the form:

Ui{o;6i) = Vi{o;6i) -pi(o)

where v(-) is a participant's valuation function dependent on outcome and type,

and p(-) is the payment function dependent on outcome. The valuation function, like the

utility function, is a mapping from an outcome to a preference for the outcome. The

payment function is a monetary transfer, either positive (a payment from the participant)

or negative (a payment to the participant), that depends on the system outcome.

Example. In the Rational Byzantine Generals problem from Chapter 2, assume that

General 3 has value 10 for his horse. The utility of outcome o\ "Attack" where he loses his

horse can be represented as: u% = vz(o\\dz) - pz{o\) or U3 = -10 -ps(oi). General 3's

utility for outcome "Attack" is positive only if £3(01) < -10, which means that General 3

receives at least 10 to compensate the loss of his horse.

Remark 3.3. We observe the need for some support to enable and enforce currency and

payment transfers. The structure utilized later in this thesis is a trusted bank. We believe

that the reliance on this trusted component 'is justified in the same way that the reliance

on a trusted public key infrastructure is used to tolerate Byzantine faults [Rei95, CL99]:

the trusted component is not ideal, but it is a practical solution to a systems problem. In

Chapter 6 we give an example of a bank operating in a real system.

3.3 Actions

Traditional distributed systems researchers use state machines [Wei92, Lyn96] to

model node behavior. The state machine model is also useful in our work where nodes are

proxies for rational participants. We will use state machines to model participant strategies,

which are expressed through their nodes. A node's state machine SM consists of:

1. A set T of states, where one state is designated as the initial state.

2. A set A = {EA,IA} of actions (whose availability may differ at each state), of which

set IA are internal actions and set EA are external actions.

3. A set L of state transitions of the form (t, a, t') where t and t' are states in T and o

is an action in A.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 36

A node's state captures all relevant information about its status in a system. It may

include received messages, partial computations, private information about its participant,

and estimated or derived knowledge about other nodes, participants, and the system.

External actions cause externally visible side effects. The most common side effect

is a message, which is sent to one or more other nodes as part of a state transition (£, a, t').

Somewhat paradoxically, the absence of a message is also an externally visible effect and is

interpreted by other participants as a delay. External actions are the only verifiable actions

of a participant, where by verifiable we mean that other participants can confirm that

these actions have occurred. This verification is possible by witnessing messages (or delays)

generated by these actions. As such, only external actions are considered in traditional

specification implementation correctness proofs.

Internal actions cause internal side effects. These actions are private and not

visible to other nodes. We model these actions as instantaneous actions. If in fact an

internal action is not instantaneous, we model the action as two actions - an internal action

and an external delay action.

It is useful to divide external actions into three categories: information revelation,

computation, and message passing. The reason for this separation is to aid the designer in

proving that actions will be correctly implemented by rational participants. The effective

approach to ensure proper behavior from a rational participant will differ for each category

of action, as we will see later in this thesis. These externally visible actions are the result

of a function that maps private state information to a delay or a message that is delivered

to at least one other node.

A Note on Delay Actions

We identify two settings where delay actions may be of particular strategic interest,

but both of these are outside of the assumptions made by this thesis: In the first setting,

participants' nodes may strategically enter or leave the system over the course of the running

of a system. In the second setting, a participant changes its type over the running of a

system, possibly due to information that it learns from other participants.

Example. As of this writing, the eBay auction system [eBa08] is an example of a real

system that exhibits both of these delay properties: First, participants enter and leave

the system at different times. Second, participants tend to refine their values for items

based on the closing prices of similar auctions [RO01] or based on the level of activity for

a particular item. In other words, participants rely on other participants' activity to help

refine their type. On the eBay system, it behooves a participant to snipe an auction; that

www.manaraa.com

Chapter 3: Rationally Motivated Failure 37

is, a participant should delay until the last possible second before placing their bid. The

delay strategies are useful because early participation sends a signal to competitors that

may ultimately increase the price of an item, thereby decreasing the winning participant's

utility.

Some delay actions may not be based on private information. In this case, we

choose to treat the actions as computation actions, described below. However, other delay

actions may be taken because of private information: Consider a hypothetical protocol

where participants' nodes have synchronized clocks and communicate with each other by

waiting some number of seconds before sending a one-bit "ping" message, where the delay

between messages is significant, only in revealing a participant's type. In this example, the

absence of the "ping" message is actually informative. Alternatively, consider an auction

for an item with a publicized minimum bid of x. If a rational participant does not bid on

the item before the close of the auction, one can infer that this participant's value for the

item is less than x. In these cases, because the delay is informative, we treat the delay as

a "hidden" message and a form of information-revelation action, described next.

3.3.1 Information Revelat ion Act ion

Definition 3.2 (information revelation action). A node's information revelation action

is a delay or message-generating function whose inputs include private information from the

participant.

A subset of information revelation actions are type-restricted information revelation actions:

Definition 3.3 (type-restricted information revelation action). A node's type-restricted

information revelation action is a delay or message-generating function where the mes­

sage is a (perhaps partial) claim about the participant's type.

The difference between these two types of actions is that a type-restricted infor­

mation revelation action by definition only provides another participant with information

about this participant's utility function, whereas the more general information revelation

action is not so restricted. (Examples are given below.) This thesis will only address ra­

tional manipulation in protocols whose information revelation actions are type-restricted.

The usefulness of carving off the subset of type-restricted information revelation actions

will become clear later in the chapter when we define incentive compatibility.

This definition uses claim to mean that a node may make an untruthful statement

about the participant type (e.g., declaring 6>j when the participant has type 6j), or may

www.manaraa.com

Chapter 3: Rationally Motivated Failure 38

make a a partial statement (e.g., declaring the participant to have either 0i,8j, or 8k) or

a statement that is inconsistent with previous claims (declaring 6j when it earlier sent a

message claiming type &i).

Example. In the Rational Byzantine Generals problem from Chapter 2, each general is

asked to send a message containing its vote for an attack plan. General 3 takes the action

/(#3) = Retreat. This message revelation is an example of type-restricted information

revelation since the action is an utility claim that can be made only by General 3.

Example. A group of employees wants to calculate their average salary without any

single employee learning the salary of the other participants. They follow this simple al­

gorithm [Sch95]: The participants form a ring. The first participant adds a huge private

negative number M to his salary si and whispers the result M + si to the second partici­

pant, who adds his salary and whispers the result M + S1+S2 to the third participant, and

soon, until the nth participant whispers M + si+S2 + .. . + s„_i + s„ to the first participant,

who subtracts M, divides this total by n, and publicly announces the result. These actions

are information revelation actions. None of these actions are type-restricted as they do not

reveal any information about the employee's type: while salary information is private (since

we assume that verifying a claim with the boss is taboo), it is not part of the type in that

a participant's individual salary docs not affect its valuation for successfully learning the

average salary.

Example. Participants in a distributed algorithm are given a list of numbers and a pro­

posed algorithm outcome and are told to take the mean of the values. Each participant is

instructed to report "yes" if their private utility for the proposed outcome is greater than

the mean, and "no" otherwise. This yes/no message action is a type-restricted information

action since it provides a partial claim (in the form of a range) of a participant's type. We

note an interesting subtlety in this example: the internal mean calculation cannot be di­

rectly checked unless it were made into an external computation action (defined below), but

an indirect check is possible if there are incentives for a rational node to perform the subse­

quent comparison correctly. In other words, if there is an incentive to say yes/no truthfully,

then the same incentive encourages the node to perform correctly the mean calculation and

comparison.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 39

3.3.2 Computation Action

Definition 3.4 (computation action). A node's computation action is a delay or message-

generating non-identity3 function whose inputs exclude a participant's private information.

In contrast to an information revelation action, all computation actions can be

replicated. In other words, any node in the system can perform the same computation

action, and correctly generated messages resulting from these actions will be identical.

Example. In the salary example, the final step where the first employee announces the

result of subtracting the reported total by M and dividing by n is an information revelation

action and not a computation action, because M is private information.

Example. At the end of the Rational Byzantine Generals problem from Chapter 2, each

general is asked to run an outcome function where the inputs are a consistent view of

reported votes. The consistent view of votes, resulting from Lamport's agreement algorithm,

is public information. If the outcome function generated a message for the queen, we would

classify this outcome function as a computation action.

We restrict computation actions in that they cannot be identity functions, meaning

that the generated message cannot be exactly equal to the input of the function for all

possible inputs. When the identify function is used, we instead label the action as a message-

passing action.

3.3.3 Message-Passing Action

Definition 3.5 (message-passing action). A node's message-passing action is message-

generating identity function whose input (and thus, output) is limited to a previously re­

ceived message.

Example. Part of the Rational Byzantine Generals problem from Chapter 2 requires

each general to simply relay other generals' votes to the remaining generals. For instance,

General 3 passes General 2's vote to General 1. This relay action is classified as a message-

passing action.

An alternate definition of computation and message-passing actions could broaden

computation actions to subsume message-passing actions. However, this distinction is valu­

able because it allows us to model the network communication layer as a set of nodes that

only execute message-passing actions.

3An identity function is defined as / : x —> x; the message output is always equal to the message input.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 40

3.4 Strategy

Earlier in this chapter, we wrote that a participant actively controls and chooses

the behavior of its node. This concept of participant choice is known as strategy. A par­

ticipant's strategy is the complete plan or decision rules that define the actions that a

participant's node will take in every state of the system. We use the language of state

machines to define strategy:

Definition 3.6 (strategy). A participant's s t rategy is the complete state machine imple­

mented by that participant's node.

We denote the particular state machine selected by participant i as Sj, selected from

the participant strategy space E, defining the world of strategies available to participant i.

The world of strategy spaces for all participants is denoted E. This thesis uses the concept

of strategy equivalence:

Definition 3.7 (strategy equivalence). Two strategies si and S2 are equivalent, denoted

s\ = s-2 as long as the two strategies produce the same sequence of external actions when

provided the same external inputs, even if the strategies differ in internal actions.

Cross-Field Connection: In traditional direct mechanism design, a participant's strat­

egy is conditioned on its knowledge of the mechanism and its type. Given a mechanism,

Si(6i) defines a participant's (type-restricted information revelation) actions in all states

of the world. This definition is incomplete in distributed mechanism design. For exam­

ple, computation and message passing actions are restricted based on the participant's

network location and from any computational limitations of the node. As an example,

consider three participants that have the same type, but whose nodes are networked in a

line: i — j — k, so that i's node can talk directly to j ' s node, but not directly to partici­

pant /c's node. Participant i cannot choose any strategies with actions that involve direct

communication to participant k, and participant j has strategies that are enabled in its

role as intermediary of messages sent from participant i to k.

3.4.1 Suggested Strategy

Out of the strategies composing the strategy space E,, the distributed system

specification provided by the system designer defines a particular correct state machine

to be implemented by a participant's node. This state machine specification of correct

behavior has a special name: it is the suggested strategy s™ £ Ej for participant i. More

www.manaraa.com

Chapter 3: Rationally Motivated Failure 41

E strategy space potentially available to any node.
Ej strategy space available to node i. E; € E.
E m strategy space defined in mechanism specification (i.e., defined in (?(•)). E m € S.
E™ subset of strategy space available to node i defined in mechanism. E™ € Em , E™ € Ej.
s m suggested individual strategies for every node in the mechanism. sm € E m .
s™ suggested individual strategy for node i. sf- e sm ,4 r a £ E£™.
s^ equilibrium strategy for node i.
Si the particular strategy (state machine) picked by node i. Si € Ej.

Table 3.1: A summary of the notation used in describing strategies and strategy space.
Note that there is no automatic relation between Si, s™, and sj, but that it will be a goal
of the mechanism designer to make SJ = s™ s sj-.

generally, the specification may provide a suggested strategy profile containing the suggested

strategies sm for every participant in the network. A participant i that directs its node to

follow strategy si ^ s™ is exhibiting failure. Note that again we use equivalence and not

equality because failure defined as ŝ ^ s™ is too strong of a statement: a node may use the

strategy Si = sf1 that produces the same external actions but differs in internal actions. In

this case, si would not exhibit failure.

A Notation on Notation:

It is important to understand the various strategies and strategy spaces that are used in

this thesis. Table 3.1 summarizes the notation that is defined in this chapter, while later

in this chapter Figure 3.1 gives a pictorial example of how these concepts interrelate.

3.4.2 Equil ibrium S t r a t e g y

One important class of strategy is known as a participant's equilibrium strategy,

denoted sf e E, for every participant i in the network. Informally, ŝ is the strategy that

participant i will choose to maximize its utility from the system outcome, given its under­

standing about the environment, including what it believes about other nodes. We write

more on the concept of equilibrium later in this chapter. The goal of the system designer is

to produce a system with a "good" equilibrium strategy s? for rational participants, where

the publicized suggested strategy s™ = s*, so that rational nodes choose to implement s?1

correctly in order to maximize their utility.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 42

A Notation on Notation: Readers unfamiliar with economics literature face a short

learning curve to parse the notation commonly used when discussing utility functions and

types. It is common to encounter a term like:

t*(/(si(0i),s_i(0_i));0i)

In English this equation measures "the utility that i receives when i truthfully reveals its

true type, and everyone else reveals their true type." From left to right, the equation is

read: the utility to node i for the outcome (calculated by outcome function f) when node i

plays the strategy that would be chosen by a node with type #,, given that agents other

than node i play strategies corresponding to their types 0-i and that agent i has type 0;.

To a systems practitioner, this notation may seem confusing - and this feeling is justified.

Part of the confusing aspect of the notation is that 6L; here means "the types of the

participants other than node i", which is particularly confusing because one of those types

could certainly be Q{. (If this confuses you, imagine that there could be a limited number

of types and an infinite number of nodes. Some nodes share the same type.) Another

confusing aspect is that u, refers to node i's utility, s, refers to node i's strategy, while 0,

in most contexts refers to a type labeled i that may not have to do with node i. To give

an example:

Ui(f(si(ei),s-i(e.i));ek)

In English, this means "the utility that node i receives (who has type k) when it pretends

to have type j , given that everyone else reveals their true type. What makes the nota­

tion additionally confusing are the layers of superscripts and subscripts that change the

meaning of the equation. For example:

In context, s'^Oi) refers to a strategy other than some Si(di).

s™{6j) refers to node i following the suggested strategy for a node with type j .

sl(6i) refers to node i following an equilibrium strategy for a node with type i.

Si(&i) generally means node i acting as its true type i, while Sj(0j) generally means

node i acting (lying) as if it were a different (and unspecified) type.

Strategies can be written without their predicate: s^ means s^(0,) and s* means s*(6i).

www.manaraa.com

Chapter 3: Rationally Motivated Failure 43

3.5 Rationally Motivated Failure

With these preliminaries defined, we are ready to define rationally motivated fail­

ure. This definition is in terms of a utility statement that compares the results of following

the suggested strategy s™ to some alternative strategy, Sj ^ sf1.

Definition 3.8 (rationally motivated failure). Participant i's node exhibits rationally

motivated failure when participant i intentionally causes its node to execute strategy

s ; ^ s f because of the participant's expectation that

«i(s(a|(0O,s i(e *)); ei) > «i foOTO). a_i(0 0) ; 6t)

where s_j denotes the strategies executed by other nodes and where g(-) is a function that

maps strategies to the system outcome.

This definition defines rationally motivated failure as a participant's deviation from

the suggested strategy in order to improve its expected utility by trying to force an alternate

system outcome. We do not worry about the cost of deviation in this definition, but solely

focus on the payoffs from outcomes. If the designer is successful in providing s"1 = s* for

all rational participants in the system, we can actually prove that nodes will not exhibit

rationally motivated failure and will instead show rationally motivated correctness.

3.6 The Mechanism as the Remedy

We have reached a turning point in the preliminaries of this thesis; this chapter

has so far been concerned with the build-up of the problem of rationally motivated failure.

We now define the concepts necessary to describe the solution.

In the last section we defined participant i's rationally motivated failure in terms

of a strategy picked from a strategy space s, e Ej and a mapping function g(-). The

mechanism defines the valid strategy space and outcome mapping function.

Definition 3.9 (mechanism). A mechanism is comprised of two components: a restricted

strategy space E m that defines the set of valid node strategies, and an outcome rule g(-)

that maps the combination of each node's selected strategy (SJ . . . sn € Em) to a system

outcome.

The restricted strategy space S m is not necessarily equal to the entire strategy

space E. We imagine that a mechanism is run in the wider world where all sorts of crazy

www.manaraa.com

Chapter 3: Rationally Motivated Failure 44

actions are possible. The mechanism designer limits E m to make the construction of a dis­

tributed mechanism manageable by restricting the domain of <?(•)• In practice, the designer

may attempt to limit E to exactly match Em with design tools that will be discussed below

and in Chapter 4.4

Example. A sealed-bid second-price auction is an example of a simple mechanism. A

trusted auctioneer defines participants' E m to be those strategies that result in the reve­

lation of a number, known as the buyer's bid. £ is more general than Em , and includes

strategies where the participant attempts to bribe the auctioneer, or attempts to prevent

another participant from bidding, etc. The auctioneer defines g(-) as a mapping from sub­

mitted bids to two instructions. The first instruction tells the seller to award the item to the

single participant who submitted the highest bid. The second instruction tells the winning

buyer to pay the seller the second-highest bid that was submitted in the auction. A designer

may enforce E m by removing the opportunities for bribery or manipulation, etc., to ensure

mechanism enforcement where the seller correctly transfers the item and the buyer makes

the corresponding payment. In human interaction, the design tools are laws, police, courts,

a free investigative media, etc. In computational settings, we'll rely on abstract dependen­

cies introduced in the next chapter, which include obedience, hardware restrictions, and

incentives.

This thesis frames the discussion of a "remedy" for rationally motivated failure

in terms of the design, proof, and construction of a specific mechanism. Our approach to

building a system that can prevent rationally motivated failure is based in the ideas found

in mechanism design, which has been loosely described as inverse game theory [PapOl].

Whereas game theory studies how participants will interact in a game, mechanism design

studies how to build games so that rational participants will exhibit "good" behavior, for

some designer-defined notion of "good." This idea of encouraging good behavior can be

made concrete by introducing a designer-specified social choice function.

Definition 3.10 (Social choice function). The social choice function /(•) is a mapping

from participant types to a particular social choice outcome:

/ (0 i , 0 2 , . . . 0 „ _ i , 0 „) —> Om

The goal of mechanism design is to construct a mechanism so that participants

acting in their own self-interest actually promote the social choice outcome om intended by

4In traditional centralized mechanism design any restriction is easily performed by the center, which can
ignore any unsupported strategies.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 45

Figure 3.1: Visualizing node strategy. This three-node example focuses on node i. Node i
has picked particular strategy s,, which produces the same sequence of external actions,
and thus is equivalent, to a range of strategies denoted by the darkest band. In particular,
S{ = s™, where s™ is the suggested strategy for participant i. In this example these
equivalent strategies have been crafted to land in node i's equilibrium strategy space E*
and so Sj is also s?. E* is a subset of E™, which is the strategy space defined by the
mechanism (i.e., the strategy space mapped by g{-)), which in turn a subset of the set of
strategies Ej available to i.

the mechanism designer.

Whereas /(•) maps types to an outcome, g(-) maps strategies to an outcome. In

the ideal world, all participants would be truthful about their types in following strategies

and this truthfulness would lead to om as the outcome of the mechanism. In practice,

participants may not desire outcome om and can instead choose a strategy in an attempt

to drive the system toward an alternate outcome.

Definition 3.11 (mechanism design problem). The mechanism design problem is to

build a mechanism so that nodes with types (9\, #2, • • • #«-i, $n) € 0 can express and will

choose to follow their chosen strategies selected from strategy space E m so that the mech­

anism's outcome function g(-) implements social choice function /(•) .

3.6.1 Approaches to Mechanism Design

Centralized Mechanism Design

Traditional direct mechanism design effectively confines the strategy space E m to

strategies involving only type-restricted information revelation actions so that nodes may

only (perhaps falsely) report information about their type. This is because traditional di­

rect mechanism design simply does not model situations where self-interested participants'

www.manaraa.com

Chapter 3: Rationally Motivated Failure 46

nodes have a role in computing, communicating, and enforcing g(-). In traditional direct

mechanism design the enforcement of a restricted E m and the implementation of g(-) are per­

formed by a trusted center that is exogenous to the participants. In traditional mechanism

design, function g(-) is a mapping from the strategies that (mis)report type information to

an algorithm outcome. In contrast to direct mechanism design, indirect mechanism design

allows for more general information revelation actions but the enforcement of a restricted

E m and the implementation of <?(•) are still performed by an exogenous trusted center.

Example. The sealed-bid second-price auction (cf. Vickrey [Vic61]) is a simple example of

a direct traditional centralized mechanism.

Distributed Mechanism Design

In the distributed mechanism design problem, the participant strategy space in­

cludes the three strategy components of information-revelation, message-passing, and com­

putational strategy. The suggested strategy s"1 for each participant i decomposes into
ST ~ (rT>PT>cT)' w * t n information-revelation strategy r™, message-passing strategy p™,

and computational strategy c™.

In distributed mechanism design the actual implementation of <?(•) is performed

by the very participants who can exhibit failure or who may prefer system outcomes other

than designer-intended om. Stated another way, g(-) is itself implemented as part of the

participants' node strategy and Ern specifics both how a participant "plays a game" and

also what game the participant will implement! If the designer fails to construct sm such

that nodes implement g(-) correctly, participants may follow strategies outside of Em , which

may result in a system outcome not even defined in the mapping from valid strategies to

outcomes </(•). This is because E™ can be ignored by node % unless this restricted strategy

space is enforced outside of the mechanism. Shown pictorially in Figure 3.1, S™ is not the

actual strategy restriction unless some outside tools are used to constrict Ej down to EJ™.

Remark 3.4. Given that node strategy is effectively unbounded in distributed mechanism

design, is a definition of E m or g(-) useful? Our answer is that in practice, external tools

are used to restrict the set of valid strategies to Em , of which a particular sm will exist in

which nodes implement g(-) correctly. This strategy sm needs to be a system equilibrium that

will hold because other participants are also playing that strategy. Another way to visualize

this using Figure 3.1 is that in practice, the designer will make Ej snap down to E™, and

will make E | snap down to a singular point sj1, for each node i. In the next chapter, and

in the examples in this thesis, we will see how such a restriction can occur.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 47

Example. In the Rational Byzantine Generals problem from Chapter 2, the queen plays

the role of the mechanism designer. She specifies to the three generals that each general

should vote to "Attack" if and only if they predict the city will be razed in a combined

attack and to vote "Retreat" otherwise. In this problem, social choice function /(•) maps

the majority of truthful razing opinions, which is part of each general's type, to a battle

plan. The queen imposed a g(-) and E m that corresponded to a direct implementation of

/(•) . But this mechanism was broken in the sense that it did not meet Definition 3.11: g(-)

did not implement /(•) for these participants using the intended strategy space Em . The

queen's suggested strategy sm was that every node implement g(-) correctly and provide a

one-word input to g(-) based on an honest assessment of victory. However, <?(•) was neither

sufficient to capture General 3's type (as E m was not expressive enough), nor did it provide

incentives for General 3 to act according to the queen's wishes. Since General 3 had no

way to coordinate with other generals to choose a different mechanism, he did what he

could to change the outcome computed by g(-). Two examples of General 3's response

were described in Chapter 2: in the first example General 3 implemented g(-) correctly and

kept his strategies within the intended E™ but failed to provide truthful input, and in the

second example General 3 provided truthful input but failed in implementing g(-) by using

a strategy outside of EJ'.

In the previous queen example, we wrote that "g(-) did not implement /(•) for

these participants." For example, had the generals been clones of the queen, we would

have expected sm to have been a success: g(-) should have been implemented correctly and

votes for a battle outcome would have been based on an honest assessment of victory. As a

forecast of what is to come in this thesis, one cannot solve the mechanism design problem

listed in Definition 3.11 without stating the solution in terms of environment assumptions

(discussed as the first step in the methodology in Section 4.1) that support a particular

solution concept (discussed later in this Chapter in Section 3.6.3).

3.6.2 M e c h a n i s m E q u i l i b r i u m

The equilibrium of a system dictates how rational participants will select their

strategies, and in most solution concepts (defined below) it is through strategy selection

that rational participants create the system equilibrium. This cycle is the key that allows

system designers to make provable statements that a particular system prevents (compati­

ble) rationally motivated failure.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 48

Definition 3.12 (equilibrium). The equilibrium in a mechanism is the situation when no

participant can force the selection of a selfishly better system outcome by changing only its

strategy.

The suggested strategy sm may not correspond to a system equilibrium, or may

correspond to many equilibria. Both of these situations are problematic for a system de­

signer. In the case where the suggested strategy is not a mechanism equilibrium there is

nothing to stop a rational participant i from choosing to follow strategy si ^ s™. When

a distributed mechanism has multiple equilibria there is a coordination problem in that

the system designer must somehow convince players to pick strategies associated the same

mechanism equilibrium. In systems with multiple equilibria the suggested strategy s™ for

each agent acts as a coordination device to ensure that participants focus on the same system

equilibrium.

Example. It is easy to explain the coordination problem with a real life example [Par04]:

two people wandering separately around New York want to meet up on a street corner in

Manhattan. There are many equilibrium strategies (corresponding to each of the street

corners) that lead to outcomes with the same utility. However, there still needs to be

some coordination to ensure that the two people pick the same equilibrium. One third

party coordination device might be an aerial skywriting plane that happens to spell out the

address of a particular street corner, effectively providing sm to each person.

Example. A default client can act as a coordination device in a software system where

there may be multiple equilibria. For example, the official BitTorrent client is described in

our earlier work [SPM04] as a coordination device in the BitTorrent protocol.

3.6.3 Mechanism Solution Concepts

A claim of a mechanism equilibrium is not made in a vacuum. Rather, the de­

signer formally states the strategies that are expected from rational nodes by proving an

equilibrium statement in terms of a solution concept that dictates the equilibria identifying

the strategies followed by rational nodes.

Definition 3.13 (solution concept). A solution concept is a mapping from a mechanism

to a set of equilibrium strategy profiles.

Each equilibrium strategy profile specifies the exact equilibrium strategy of every

participant. If the solution concept maps the mechanism to a single strategy profile, we say

that there is a unique equilibrium in that mechanism using that solution concept.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 49

This section provides a brief tour of several important solution concepts that orig­

inate in the game theory literature (cf. Fudenberg and Tirole [FT91]) and are particularly

applicable to our work in system design. Additionally, we define a new solution concept

that permits reasoning in the presence of rational and traditional faults.

Dominant Strategy

A standard solution concept is the dominant strategy equilibrium [JacOO]. This

solution concept identifies an equilibrium profile where the only assumption made by par­

ticipants is that other participants can play any strategy in £_j.

Definition 3.14 (dominant strategy equilibrium). A strategy profile sm is a dominant

strategy equilibrium in distributed mechanism specification m = (<?,£m,sm), if S™ sat­

isfies

«i(fl(sr(0i)>*-iOM);0i) > uite^O.s-iOM);^)

for all rational compatible participants i with 0$, for all participants —i with #_$, for all

When a system designer can suggest a dominant node strategy to some partici­

pant, the suggested strategy is utility maximizing for that participant, regardless of other

participants' node strategies selected from E_j. Unfortunately, we will rarely encounter

a distributed mechanism with a dominant strategy solution concept. The main problem

is that the strategy space £™ is probably unenforceable as a boundary on £$ when par­

ticipants —i are not following strategies in E ^ . In the centralized setting, E_, could be

reasonably restricted to simple information revelation actions. In the distributed setting,

participants' nodes implement the rules of a mechanism and it is possible that other nodes

can change the rules of the game in the middle of the game as part of their strategy! It

seems unlikely that a participant can pick a utility-maximizing strategy regardless of the

mechanism, with the exception of strange corner cases such as when the participant's util­

ity is the same for all system outcomes, for all games. We view the loss of the dominant

strategy solution concept as a necessary cost of moving from traditional to fully distributed

mechanism design.

Example. A small silly example of the failure of a dominant strategy mechanism in the

distributed setting is as follows: two people agree to implement a distributed Vickrey-

Clarke-Groves (VCG) mechanism [Vic61, Cla71, Gro73] to bid for and allocate a new car.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 50

Following an established distributed VCG protocol, Player One submits her truthful bid

for the car to Player Two. Player Two changes her portion of the decision function to force

the outcome "Player Two wins the car" and terminates the distributed algorithm.

Nash

On the other end of standard solution concepts, as ranked by knowledge require­

ment, is the Nash equilibrium [Nas50]. This famous solution concept requires that a par­

ticipant understand the types and strategies of all other participants in the system. Given

this requirement, in equilibrium every participant will select a utility-maximizing strategy

given the strategy of every other agent:

Definition 3.15 (Nash equilibrium). A strategy profile sm is a Nash equilibrium in

d i s t r i b u t e d m e c h a n i s m specif icat ion m = (<?, E m , s m) if s™ sat isfies

«i(5(*r(ft),s-i(0-i));ft) > «i(s(4(ft),*-i(0-0); ft)

for all rational compatible participants i with 6{, for all s[^ s™.

Whereas dominant strategy could be defined without reference to the equilibrium

strategies of other nodes, the Nash equilibrium solution concept (and the remainder of the

solution concepts defined in this section) depend (at least partly) on other nodes' equilibrium

behavior.

The Nash equilibrium has received attention in recent literature on network games

[RouOl] but adopting this notion for practical systems is not usually appropriate; a Nash

equilibrium requires a participant to have knowledge of other participants' type, which is

usually unrealistic.5

Example. The knowledge assumptions underlying a Nash equilibrium solution to the

Rational Byzantine Generals problem from Chapter 2 would require that each general knows

exactly the type and selected strategy of every other general. This requirement is akin to

each general being a mind-reader with perfect predictive ability.

Ex post Nash

Ex post? Nash is a refinement on Nash; its definition is exactly the same as Nash
5On the other hand, it could be argued that a variant on Nash equilibrium is appropriate when it is well

known that nodes are implementing a default obedient strategy, perhaps provided as part of a default client
software installation.

Ex post is Latin for "after the fact". In models where there is uncertainty that is resolved by the

www.manaraa.com

Chapter 3: Rationally Motivated Failure 51

except tha t it relies on a different participant knowledge model. The assumption in ex post

Nash is that the rationality of participants is common knowledge amongst participants.

Defini t ion 3 .16 (ex post Nash equilibrium). A strategy profile sm is an ex pos t N a s h

equi l ibr ium in distributed mechanism specification m = (g,T,rn,sm) if s™ satisfies

M^r(ft),s"(M);ft) > uiWMMO-iWi)

for all rational compatible participants i with ft, for all rational compatible participants - i

with 6-i, for all s'^sf.

The knowledge assumption in ex post Nash is much weaker than that required

in the more standard Nash equilibrium solution concept, but still stronger than dominant

strategy. Unlike Nash, a participant does not need to know other part icipants ' exact types.

This solution concept is appropriate when a system contains only rational compatible be­

havior. Our work on the FPSS protocol in Chapter 5 uses this solution concept.

k-partial e x pos t N a s h

This thesis introduces the k-partial ex post Nash solution concept for systems where

failures may still occur despite the designer's use of incentives. This refinement on the ex

post Nash concept informally states that each rational compatible participant i should direct

its node to follow the suggested strategy sm regardless of the identity and actions of "faulty"

nodes, as long as at least k other nodes also adhere to the specification. This concept is

attractive because it says that in practice a participant just needs to know that compatible

rationality (or obedience) of at least k other nodes is common knowledge amongst nodes.

Def in i t ion 3 .17 (k-partial ex post Nash equilibrium). A strategy profile sm is a k-partial

ex pos t N a s h equi l ibr ium in a distributed specification m = (g, E m , sm) if S™ satisfies:

ui(g(sT(ei),sT(9i)...sT(ek),sl(iX„k)(e?)y,ft) > UMS'M),sr(ftO-s"(ftO,s7_(1,i...fc)(e?));ft)

for all rational compatible participants i with ft, for all rational compatible participants

1...& with 0i...dk, for all s^ ^ s"\ and where the remaining nodes have an arbitrary type

and follow an arbitrary strategy.

execution of the mechanism, the ex post calculation of utility from the system outcome is the calculation
that occurs after the uncertainty has been resolved. Here, ex post Nash refers to the situation where the
common rationality of participants is assumed and then the equilibrium holds when this assumption is borne
out in practice.

www.manaraa.com

Chapter 3: Rationally Motivated Failure 52

This solution concept is technically a family of solution concepts whose members

are defined by values of k; our work on the RaBC protocol in Chapter 6 uses a 1-partial ex

post Nash solution concept, meaning that the solution concept holds as long as at least one

other node in the algorithm is rational compatible (or obedient).

3.6.4 Choos ing the Appropriate Solution Concept

In traditional mechanism design, the knowledge model is the sole factor in deter­

mining the appropriate solution concept. Distributed mechanism designers must not make

the mistake of picking a solution concept in the same fashion.

In the next chapter, we will explore how the participant, network, and depen­

dency models affect the decision to pick an appropriate solution concept in a distributed

environment. In general, the system designer should pick a solution concept that is appro­

priate to these assumptions. For example, traditional solution concepts are not appropriate

when faced with unrestricted failure. Rational nodes cannot depend on failing nodes to

behave rationally, and the implementation of g(-) may change because of node failure. So­

lution concepts such as the k-partial ex post Nash family are appropriate when some nodes

fail. In other more restricted settings, other appropriate solution concepts such as trembling

hand Nash equilibria [Sel86] or k-fault tolerant Nash [Eli02] (both described in this chapter's

bibliographic notes) may be appropriate.

Remark 3.5. Each of the solution concepts as presented above assumes that nodes, although

self-interested, are also benevolent in the sense that a node will implement the suggested

strategy as long as it does not strictly prefer some other strategy. In the previous solution

concepts, a strong equilibrium would hold if the utility comparisons were stated in terms of

strict inequality and not weak inequality.

3.7 Bibliographic Notes

Utility and Type

All of the examples in this thesis assume cardinal utility. Other work, such as

Halpern and Teague [HT04] and McGrew, Porter, and Shoham [MPS03] work with ordinal

and not cardinal preferences. Cardinal utility is appropriate in this thesis, where we will

rely on monetary transfers to provide incentives for correct participation.

Brandt [BSS07] studies participants whose utility, contrary to the common as­

sumption of self-interest, is instead based on how damaging a system outcome is for other

www.manaraa.com

Chapter 3: Rationally Motivated Failure 53

participants. These participants might be described as possessing an inherent spitefulness.

We would label this spitefulness as a form of rational incompatible behavior. Alternatively,

these participants might expect competitive scenarios where the loss of a competitor will

likely result in future gains, external to the current system.

One assumption that we make in this thesis is that participants are capable of

calculating their own utility for various system outcomes. Economics also studies bounded

rational participants [GS02], who do not have this capability. For example, a participant's

computational faculties may not be up to predicting one's utility for an outcome. Alterna­

tively, a participant may only be able to provide a range of possible utilities for an outcome.

In our model, we could classify erroneous behavior due to such bounded rational reasoning

as irrational behavior.

Actions

The particular kind of state machine model used in this chapter is based on that

described by Lynch [Lyn96]. The notion of using a state machine to describe a system

specification as well as an implementation of this specification is described by Weihl [Wei92].

Work by Monderer and Tennenholtz [MT99] recognizes that participants may per­

form communication actions as part of the translation from centralized mechanism design

to an actual network implementation. Furthermore, the general problem of participants'

strategies extending beyond information revelation actions has been identified by Nisan and

Ronen [NR99] and by Feigenbaum et al. [FS02]. The breakdown of strategy into components

of information revelation, computation, and message passing is described in Shneidman and

Parkes [SP04].

Mechanisms, Strategy, and Equilibria

Brafman and Tennenholtz [BT04] also reflect on the problem of directing agents

to choose among multiple equilibria. They believe, as we do, that computational systems

make the coordination problem easier. The notion of the default client software as the basis

for a suggested strategy appears in Shneidman et al. [SPM04].

Solution Concepts

Besides the k-partial ex post Nash solution concept presented here, there are

other interesting related solution concepts. In his paper on k-fault tolerant implementation,

Eliaz [Eli02] investigates the implementation problem arising when some of the players are

faulty in the sense that they fail to act optimally. The designer and the nonfaulty players

www.manaraa.com

Chapter 3; Rationally Motivated Failure 54

only know that there can be at most k faulty players in the population. Eliaz's work defines

a solution concept that requires a player to optimally respond to the nonfaulty players re­

gardless of the identity and actions of the faulty players. The main differences between the

solution concept proposed by Eliaz and our work is that Eliaz assumes a Nash equilibrium

and is limited to information revelation actions.

Also related to Eliaz's work is the concept of the trembling hand perfect equilibrium.

A trembling hand perfect equilibrium, described by Selten [Sel86], is an equilibrium that

takes into account a small chance that a participant may choose an unintended strategy. It

is so-named because a human participant is imagined to suffer from a "slip of the hand" in

selecting his strategy. This "failure" creates the possibility of off-equilibrium play.

Abraham et al. [ADGH06] develop k-resilient Nash equilibria, which are joint

strategies where no member of a coalition of size up to k can do better, even if the whole

coalition defects. Abraham et al. show how this concept can be used in secret sharing and

multiparty computation problems.

Feigenbaum et al. [FRS06] introduce the collusion-proof ex-post Nash equilibrium

solution concept. In a collusion-proof ex-post Nash equilibrium, no deviation by a group

of agents can strictly improve the outcome of a single agent in that group without strictly

harming another. It may be possible to extend this concept into a k-partial collusion-proof

ex-post Nash equilibrium by using the traditional systems failure approaches highlighted in

this thesis.

www.manaraa.com

Chapter 4

Methodology to Address

Rationally Motivated Failure

This chapter defines the methodology used to address rationally motivated failure

and explicates the step where one proves that a specification prevents rationally motivated

failure. We first step through the methodology:

1. Model the Environment. In this step, the designer specifies the environment as­

sumptions, which define the participant model (including knowledge model), network

model, and dependency model. These models describe "expected reality" of a network

environment and serve as the basis for reasoning about rationally motivated failure

and fault tolerance.

2. Design, Prove, and Implement Specification. The designer constructs a new

system specification that is designed to prevent rationally motivated failure. The

specification consists of a mechanism, as defined in the last chapter, and a suggested

strategy for each type of participant. Specification correctness and failure robustness

are proved with respect to a particular solution concept that depends on the environ­

ment assumptions established in the modeling step. The system specification is then

realized with an implementation.

3. Eva luate Effect iveness , Imp a c t , and Cost . Designers evaluate the trade-offs

required to implement a system that is robust to rationally motivated failure, and

measure the cost (in messages, etc.) of the system.

55

www.manaraa.com

Chapter 4'- Methodology to Address Rationally Motivated Failure 56

4.1 Model the Environment

The environment assumptions lay out the ground rules for a failure analysis. These

assumptions capture all of the relevant features and limitations that are present in a system,

and that will be relevant to the construction of a distributed algorithm that is robust to

rationally motivated failure. The assumptions are stated in terms of a set of participant,

network and dependency models.

4.1.1 Participant Model

The participant model describes the makeup of participants in the system. It

may describe the identity, exact number, percentage, or bound of participants that are obe­

dient, capable of expressing rationally motivated failure, or capable of non-rational failure.

In practice it is possible to construct fairly rich and meaningful participant models: This

can be done experimentally, such as in Seuken et al. [SPP08], where a model of participants

is reverse-engineered from observed user behavior in a real protocol, or simply by fiat, such

as in traditional Byzantine distributed systems work like Castro and Liskov [CL99], which

simply defines a bound on the amount of certain types of behavior so that their failure

analysis will hold.

The participant model includes a knowledge model about what rational participants

believe about other participants in the system - these beliefs may differ from reality but

nevertheless serve to explain a rational participant's actions.1 The knowledge model can

be specific and dictate what every participant knows and believes about others. More

realistically, the knowledge model can describe beliefs in general terms. For example, a

general model can state that participant beliefs equate to:

• no knowledge: In this model, nothing is assumed by participants about other par­

ticipants.2

It is useful to separate what a participant believes about other rational participants

from what a participant believes about other types of participants. Classes of beliefs about

other rational nodes include:

'The knowledge model might be better described as a belief model, but we use the terminology already
established from mechanism design.

2For those readers familiar with mechanism design: the "no knowledge" assumption is actually stronger
than what is assumed by centralized dominant strategy. For example, true "no knowledge" does not assume
anything about possible collusion between nodes, whereas claims about dominant strategy mechanisms only
hold if no collusion is assumed.

www.manaraa.com

Chapter 4-' Methodology to Address Rationally Motivated Failure 57

• full ex post rationality: The rationality of participants is common knowledge

amongst participants. The scope of rationality (e.g., anti-social, bounded rational,

etc.) must be defined.

• full knowledge: In this model, participants have complete type knowledge about

other participants in the system.

Participants can believe that only a subset of participants is rational, and that the remaining

participants are faulty:

• k-fault: In this model, participants are aware that up to k nodes may simultaneously

exhibit faults in the distributed algorithm. This model is appropriate to deal with

failure in traditional distributed systems, with all existing Byzantine failure work

limiting k to be k < | (E.g., Lamport [LF82], Castro [CL99]), where n is equal to

total number of nodes in the distributed system.

Knowledge models about rational compatible participants and other participants

can be combined when appropriate; e.g., a k-fault, full knowledge model would describe a

setting where a participant believes there are at most k simultaneous faults and where a

participant has complete knowledge of all compatible participants.

Cross-Field Connection: For those readers familiar with mechanism design, the knowl­

edge model is recognizable as the standard support of a solution concept. But why do we

describe the knowledge model as a part of the participant model? In a system with failure

that is not rationally motivated, it is important to capture the actual system makeup

in addition to each node's belief about the system makeup in order to prove meaningful

statements about system correctness. The beliefs of a rational node are used to show

equilibrium behavior, which in turn is used to show satisfaction of system correctness

conditions.

4.1.2 Network Model

The network model includes connectivity (topology), bandwidth, latency informa­

tion and message limitations. Synchronicity information is included as it affects the proofs

and proof techniques used to show distributed algorithm correctness (cf. Lynch [Lyn96]).

4.1.3 Dependency Model

The dependency model makes explicit any "hidden" system features or limitations

that may exist in a system. Examples of information contained in the dependency model

www.manaraa.com

Chapter ^: Methodology to Address Rationally Motivated Failure 58

might be the details of a public key infrastructure (PKI) or the description of the software

running on nodes, insofar as these details pertain to rationally motivated failure.

4.2 Design, Prove, and Implement Specification

In this step, the designer constructs a new system specification that is designed to

prevent rationally motivated failure. We give an overview of the sub-steps before discussing

them in more detail in this section. Specifically, the system designer should:

• Identify a subset of rational compatible behavior (failure) that the designer wishes to

address. The system designer chooses to provide incentives to correct a specific subset

of bad behavior.

• Specify a mechanism. As defined in the last chapter, the mechanism maps between

node strategies and the system outcomes. The mechanism is denned by a strategy

space E m and an outcome rule g(-) that specifies the actual mapping.

• Specify a suggested strategy s™ for each participant type. As described in the last

chapter, the suggested strategy is a utility maximizing strategy, for all types i £ 0 .

• Build a rigorous proof of specification faithfulness that holds for a particular solution

concept that holds in a particular environment. Informally, the designer guarantees

that a rational compatible node will exhibit rationally motivated correctness rather

than rationally motivated failure.

• Implement the specification, being careful not to violate specification faithfulness.

4.2.1 Identify a Subset of Rational Compatible Behavior.

In Chapter 2.7, we described the difference between rational compatible behavior

and incompatible behavior:

• compatible rational behavior can be addressed through incentives and the system

design techniques discussed in this thesis, so that participants do not exhibit rationally

motivated failure and the system operates as the designer intends.

• incompatible rational behavior is behavior that cannot be addressed without also

sacrificing the intended system goals.

In the perfect world, all rational compatible behavior would be addressed. In

practice, preventing some types of rationally motivated failure may be seen as too expensive

www.manaraa.com

Chapter 4: Methodology to Address Rationally Motivated Failure 59

or difficult, even if addressing such behavior would not sacrifice the original intended system

goal. Within the set of rational compatible behavior, the designer should identify the subset

that he or she wishes to address. In effect, the system goal is refined so that certain types

of rational compatible behavior are treated as incompatible.

Example. In the Rational Generals problem, we might imagine a General who will agree

to follow orders if and only if he can become King. While incentives could be created to

ensure this General's cooperation, the cost of placating this would-be Caesar is rather high.

The queen may choose to treat this type of behavior as incompatible.

Example. In earlier work we identified rationally motivated manipulation opportunities in

the BitTorrent file distribution protocol [Coh03]. That work considers two classes of users:

those concerned with maximizing distribution speed and those concerned with minimizing

network bandwidth. A designer may decide that the negative impact of network bandwidth-

minimizing participants is expected to be low and the cost to address these behaviors is

relatively high. A revised protocol might address only the rational compatible manipulations

that originate from nodes that seek to maximize distribution speed.

The selected rational compatible behavior(s) become the target audience of a prop­

erly constructed mechanism. The designer's goal is to provide incentives for correct behavior

to this set of participants.

4.2.2 Specify a Mechanism and Suggested Strategy.

The concepts of the suggested strategy and mechanism design were introduced in

Sections 3.4 and 3.6. The specification embeds a social goal and likely provides incentives

for correct behavior from rational compatible participants. There are several tools that can

be used to specify the mechanism: a system designer familiar with state-based specifica­

tions [Lyn96] might lay out the strategies and outcomes in terms of a finite state machine

and then identify the suggested strategy as a particular path through the machine. How­

ever, a full definition of the mechanism may be prohibitively complex; the strategy space

could be infinite. There are two combinable approaches to specifying a mechanism in the

face of a large strategy space:

The first approach is to restrict the allowed strategy space E m , either weakly

by fiat or strongly by system "features" that restrict participants from performing certain

actions. For example, a designer could use trusted networking hardware (as in Perrig et

al. [PSST01]) to force participants to use a limited vocabulary when sending messages.

The second approach is to produce a full specification that favors a few strategies

www.manaraa.com

Chapter 4: Methodology to Address Rationally Motivated Failure 60

and maps other strategies into a "catch-all" outcome. For example, the designer may

propose a suggested strategy for all participants that is shown to be utility maximizing for

all participants. The designer would then map all other strategies to an outcome where

participants receive strictly less utility.

4.2.3 Prove Specification Faithfulness

A proof of specification faithfulness is a certification that rational nodes will choose

to follow the algorithm specified by the system designer. Faithfulness is as important as

other systems correctness properties of safety and liveness [Lyn96] in settings that contain

rational nodes. This certification is given for a solution concept and a particular envi­

ronment. To achieve faithfulness, a system designer must create a mechanism where the

suggested strategy sm is equivalent to an equilibrium profile behavior s* chosen by rational

nodes.

• To show weak faithfulness, one proves that any combination of deviations by a single

player from sm will not increase that rational participant's utility.

• To show strong faithfulness, one proves that any combination of deviations by a single

player from sm will strictly decrease a node's utility.

An interesting aspect of real system design is that in many cases, there is a default

software program or official protocol specification that, is supplied to clients. A system

designer can use this software to convey the suggested behavior that it wishes a participant's

node to follow. In effect, a default client is sm. This observation allows the mechanism

designer to suggest an equilibrium strategy or to coordinate an equilibrium if there are

many potential equilibria in a mechanism.

Definition 4.1 (faithfulness). An implementation is a faithful implementation of the

specification in a particular solution concept and environment when the suggested strategy

sm is equivalent to an equilibrium profile strategy s* chosen by all compatible rational nodes

in a mechanism implementation.

4.3 Evaluate Effectiveness, Impact , and Cost.

It makes sense for a system designer, throughout the design process, to weigh

the trade-offs of building a system that is tolerant to rationally motivated failure. In this

step, the designer evaluates the system implementation to construct a cost-benefit analysis

www.manaraa.com

Chapter 4-' Methodology to Address Rationally Motivated Failure 61

of a robust system, as compared to a non-robust system. A robust system probably has a

higher cost when compared with a non-robust system. For example, participants that follow

a faithful specification may need to expend more computation, utilize more bandwidth, etc.

The details of such an analysis are problem specific, and we give two examples in Chapters 5

and 6.

4.4 Proving Specification Faithfulness

Having stepped through the methodology for addressing rationally motivated fail­

ure, we spend the remainder of this chapter explicating the middle step, where one must

prove that a specification prevents rationally motivated failure.

4.4.1 Useful Properties: CC, AC, and IC

We introduce communication- and algorithm compatibility as properties that are

necessary when showing that a mechanism avoids failure from rational compatible par­

ticipants. We also translate the idea of incentive compatibility, found in the traditional

mechanism design literature, into a definition suitable for a distributed environment. Re­

call that earlier in the chapter we decomposed the suggested strategy for each participant i,

s™, into into S™ = (r™,p™,c™), with information-revelation strategy r™, message-passing

strategy p™, and computational strategy c™

Definition 4.2. A distributed mechanism specification m = (g, Em , sm) is incentive com­

patible (IC) when there exists a particular equilibrium in which participant i cannot re­

ceive higher utility by instructing its node to deviate from the suggested type-restricted

information-revelation strategy components of r™(9i), for all nodes i and all types 0,.

The concept of incentive compatibility in a centralized mechanism with a dominant

strategy solution concept is known as a strategyproof mechanism. In this mechanism, each

participant i's strategy Sj(0») is simply to report its type 0i, and g(-) is equal to the social

choice function /(•) .

Definition 4.3 (strategyproof). A centralized mechanism m = (/, 0) is s trategyproof if

Ui(f(0i,0-i);0i) > Ui(/(0;,0-<);0i) for all 9t and 0_(> all Q\ ^ Bit all 6^0-^ € Q.

We note that a distributed notion of a strategyproof mechanism is not useful for the

same reasoning given earlier as to why a distributed mechanism with a dominant strategy

solution concept is not useful. Namely, it will almost never be the case that one strategy

www.manaraa.com

Chapter 4'- Methodology to Address Rationally Motivated Failure 62

of information revelation will be the utility-maximizing strategy, regardless of the game

implemented by other participants. However, as we will see later, it will be useful to prove

specification faithfulness by starting with a strategyproof centralized mechanism, which is

then distributed and thus loses any claim of dominant strategy equilibrium.

Cross-Field Connection: Readers familiar with mechanism design will recognize in­

centive compatibility from traditional mechanism design. In traditional mechanism design,

an incentive-compatible mechanism is one that has an equilibrium strategy profile where

Si(0i) = 6i for all agents i e n. In other words, an incentive-compatible mechanism

is one where every agent follows a truth-revealing strategy and simply reports its type

information.

In our distributed mechanism design-friendly definition above, we have translated the

intention of centralized incentive compatibility into the distributed environment by restrict­

ing the term to describe type-restricted information revelation actions. Our definition also

extends the idea of incentive compatibility to allow for incremental type revelation, rather

than an all-at-one declaration of type.

This thesis will not address systems with information revelation actions that are not

type-restricted. It seems unlikely that a designer can provide incentives for a participant

to reveal such information when that participant receives the same utility whether or not

the participant follows the suggested (not type-restricted) information revelation strategy.

Definition 4.4. A distributed mechanism specification m = (g,T,m,sm) is communica­

tion compatible (CC) when there exists a particular equilibrium in which node i cannot

receive higher utility by deviating from the suggested message-passing strategy p™(0j), for

all nodes i and all types (k-

CC means that a rational node will choose to participate in the suggested message-

passing actions within the distributed-mechanism specification.

Definition 4.5. A distributed mechanism specification m = (g, £ m , s m) is algorithm

compatible (AC) when there exists a particular equilibrium in which node i cannot receive

higher utility by deviating from the suggested computational strategy c™(#j), for all nodes

i and all types 6>j.

AC means that a rational node will choose to participate in the suggested com­

putational actions within the distributed-mechanism specification. We note that in each

one of the definitions of AC, CC, and IC, we allow for deviations in other aspects of the

www.manaraa.com

Chapter ^: Methodology to Address Rationally Motivated Failure 63

strategy. When combined, properties IC, CC and AC are required for a faithful distributed

implementation. Moreover, IC, CC and AC are sufficient for a faithful implementation:

Proposition 4.1. A distributed mechanism specification m = (g,Hm,sm) in which sug­

gested strategy sm = (rm,pm,cm) is IC, CC and AC in the same equilibrium will yield a

faithful implementation from all rational compatible participants, and will lead to the out­

come g(sm(0i)) € O for all participating Q\.

Proof. IC, CC and AC provide for the existence of an equilibrium in which nodes will follow

suggested information-revelation r™, and similarly for message-passing p™ and computation

c™. To achieve faithfulness we simply need that there is an equilibrium that achieves each

one of these simultaneously. •

4.4.2 Strong AC and Strong CC

If participants in a distributed mechanism can be limited in their information-

revelation actions to follow type-restricted information revelation, then there is a useful

proof technique that applies when the distributed algorithm has a corresponding strate-

gyproof centralized mechanism. By a corresponding mechanism, we mean that there is a

well-defined mechanism where g(-) can be implemented by a center, and where participants

can only participate in information revelation to the center. The systems considered later

in this thesis in Chapters 5 and 6 do in fact ensure a phase of type-restricted information

revelation. In this phase, messages are interpreted as claims of type, and are restricted from

being interpreted as more general information revelation actions. In both of the systems

considered later in this thesis, it is not profitable for a node to execute other types of actions

until a first type-restricted information revelation phase is certified by a trusted node.

For these and similar systems, we define strong-AC and strong-CC, and show that

together with the strategyproofness of the corresponding centralized mechanism, strong-AC

and strong-CC provide IC, and in turn a faithful implementation. In this setting, we can

reduce the problem of proving faithfulness in a particular solution concept to that of:

1. Demonstrating that the corresponding centralized mechanism is strategyproof.

2. Strong-CC: a rational node should always follow its suggested message-passing strat­

egy (whatever its information revelation and computational actions) in a particular

solution concept.

3. Strong-AC: a rational node should always follow its suggested computational strat­

egy (whatever its information revelation and message-passing actions) in a particular

www.manaraa.com

Chapter 4- Methodology to Address Rationally Motivated Failure 64

solution concept.

Definition 4.6. A distributed mechanism specification m = (g, S m , s m) is strong-CC if a

node cannot receive higher utility by deviating from the suggested message-passing actions

Cj, whatever its computational and information-revelation actions in a particular solution

concept.

Definition 4.7. A distributed mechanism specification m = (g, E m , sm) is strong-AC if a

node cannot receive higher utility by deviating from the suggested computational actions pi,

whatever its message-passing and information-revelation actions in a particular solution

concept.

Taken together, the strategyproofness of a centralized mechanism, strong-CC, and

strong-AC rule out any useful joint deviations in which a participant directs its node away

from sm by a combination of actions.

Proposition 4.2. A distributed mechanism, specification m — (g, E m , sm) elicits a faithful

implementation of g(sm(0)) from compatible rational participants when the corresponding

centralized mechanism is strategyproof and when the specification is strong-CC and strong-

AC.

Proof. To prove that the specification is an equilibrium we first assume that the strategies

used by other nodes follow the behavior assumed by a particular solution concept. For

example, in ex-post Nash, we assume that every node except i is following suggested spec­

ification, s ^ . As another example, In 1-partial ex post Nash, we assume that at least one

other node j besides node i is following sj1.

By strong-CC and strong-AC shown of the mechanism in this solution concept

and environment, a rational node i will follow the suggested message-passing and compu­

tation actions. (Notice that we can rule out joint deviations of both message-passing and

computation actions). To prove IC, we can now safely assume that other nodes follow

the strategies dictated by the chosen solution concept. Let f(d) — g(sm(6)) denote the

outcome rule in the corresponding centralized mechanism. By definition of type-restricted

information-revelation actions, the space of possible outcomes becomes g(sr
i"'(9i),s™i(9-i)),

but ffK^i).*-<(»-<)) = f0i,6-i), and Uj(/ (M-i) ;0 i) > Ui{f0i,6-i);9i) for all Li, all

6i, and all 0$ ̂ = 6i by strategyproofness of g{sm{6)) = f(0). •

Remark 4.1. In applying Proposition 4-2 one must be careful to ensure that actions la­

beled as "type-restricted information revelation" within the suggested specification satisfy

the technical requirement of consistent information-revelation which can require consistency

www.manaraa.com

Chapter 4'- Methodology to Address Rationally Motivated Failure 65

checking. Consistent information revelation simply means that a node does not claim to be 9i

to one participant and conflicting type 9j to another participant, and that some algorithmic

consistency checking is required to catch this situation.

4.4.3 Faithfulness Proof Tools

For faithful adherence to a specification, we need to demonstrate strong-CC and

strong-AC as well as the consistency of information-revelation actions. The following ap­

proaches are useful to this end:

Break into Phases

A distributed mechanism can be decomposed into disjoint phases that are indi­

vidually proved to be strong-CC and strong-AC without considering joint deviations that

involve actions from other phases. Phases can be separated during runtime with checkpoints

where some (perhaps trusted) node certifies a phase outcome and the start of a subsequent

phase. One must be sensitive to the added computational and communication complexity

in using checkpoints. This decomposition technique is powerful because it can allow an

exponential reduction in the number of joint manipulation actions that must be checked

in a faithfulness proof since each phase can be self-contained and checked for correctness

before moving on to a subsequent phase.

Abstract Dependencies

A remedy may assume certain external dependencies. It is useful to describe

these dependencies in terms of their logical features, rather than specifying the actual

implementation. This abstraction is common in distributed systems, where logical devices

such as "failure detectors" [CT96] are commonly included in specifications, but are not

described in terms of their full device realization:

• The logical devices describe the ideal conceptual tools that are relied upon by a

remedy. These devices are not implementations; they are ideas like "correct unicast"

or "perfect identity service". Logical devices can further rely on other logical devices.

• The device realizations describe how one actually engineers a particular device.

Realizations need not be "perfect"; a device realization that is "good enough" may be

fine as long as it reasonably approximates the logical device specification. For example,

a logical device may specify a "guaranteed encryption service." A realization that uses

www.manaraa.com

Chapter 4'- Methodology to Address Rationally Motivated Failure 66

a public key infrastructure may be acceptable even if the resulting device is not perfect

and can be broken with a brute-force key attack.

The main advantage to the logical device / device realization abstraction is that

one can prove a remedy in terms of logical devices without worrying about the details of

the device realization. The proof of the remedy holds so long as the dependency realization

is correct. Of course, if a remedy that relies on logical devices that cannot be realized or

reasonably approximated is not terribly useful.

Design Restrictions

Design restrictions, also known in previous work as problem partitioning [PS04],

move manipulation opportunities away from rational participants. For example, in the

TCP hacking example introduced in Chapter 1, Savage et al. [SCWA99] propose that a

message recipient must acknowledge a packet by echoing a specific number generated by the

sender. In effect, the designer has restricted the set of manipulative strategies that can be

effectively employed by a manipulative receiver. There is a design trade-off: an opportunity

for manipulation is reduced but the sender must now keep track of what numbers correspond

to what recently sent packets.

Another example of this technique is the distributed Vickrey Clarke Groves mech­

anism [PS04], where a distributed mechanism runs on a single set of participants, but the

portion of the calculation performed by that participant never directly affects that partic­

ipant's outcome. A more extreme way to achieve problem partitioning is to split a group

of participants into two and run separate distributed mechanism computations, where one

mechanism calculates the outcome for the other and vice versa.

Incentives

Incentives are rewards and punishments, deployed into or alongside a system, that

elicit good behavior from participants. Incentives can be basic. In the aforementioned TCP

hacking example, the incentive for echoing the sender's number (as opposed to echoing

a random number, or not echoing a number at all) is that the receiver will be rewarded

with the next packet in the sequence. A further incentive extension could deny service to

receivers that attempt a "brute-force" echo of all possible "specific numbers." In-algorithm

incentives work when participants will respond to such internal rewards and punishments.

Incentives need not be internal; in the earlier Seti@Home example, the external leader-

board score provides incentives for participation by tracking submitted work. External

www.manaraa.com

Chapter \: Methodology to Address Rationally Motivated Failure 67

incentives must be carefully designed, since participants are asked to offset any participation

cost with an outside benefit. Furthermore, participants may look for opportunities to

achieve external rewards without correctly participating in the main system, as the earlier

Seti@Home example demonstrates.

A good external incentive is a monetary payment. Currency payments are com­

monly assumed in mechanism design when building mechanisms that avoid information-

revelation manipulation. Payments can also be used to provide incentives for nodes to

perform faithful computation and message passing.

Redundancy

Redundancy in distributed systems is often used to detect faulty executions of a

common calculation [Lyn96]. Redundancy in a network of rational nodes is a more powerful

idea, since rational nodes that choose to act in a "faulty" fashion can be penalized with a

negative payment large enough to ensure compliance with semi-private value revelation, a

distributed calculation, or in message passing [MT99].

Explicit Obedience

It is sometimes realistic for designers to inject a small number of nodes running

an unmodified correct specification implementation (e.g., Harkavy et al. [HTK98]). These

nodes can be useful as equilibrium tie-breakers in settings with multiple equilibria. In some

cases, the identity of these nodes need not be made public. [KSGM03].

Cryptographic Methods

Cryptography has been used to make deviations from a specified algorithm de­

tectable [Bra02]. Furthermore, by signing or encrypting messages, it may not be rational

to change a message. One problem with cryptography can be increased complexity: if a

system relies heavily on this technique, computation and communication complexity can

become prohibitive.

4.5 Bibliographic Notes

Faithfulness

Our earlier work on faithfulness [SP04] has been expanded into this thesis and of

course attempts to provide tools and research to address rationally motivated failure. We

www.manaraa.com

Chapter 4: Methodology to Address Rationally Motivated Failure 68

are excited to report that other researchers have started to use our earlier work to build

faithful systems. For example, Garg and Grosu [GG07] propose two protocols that are

faithful implementations of the Shapley Value mechanism [Rot05], and actually build and

evaluate these faithful protocols on Planetlab [PCAR02],

Models and Inferences

Much of the research in algorithmic mechanism design has focused on dominant

strategy implementations, where participants assume that other participants are running

the same algorithm, but assume nothing about the inputs that are fed into that algorithm.

Mu'alem [Mu'05] observes that the very nature of distributed environments allows

algorithm participants to make inferences about the types of other agents. This is similar

to our observation in this chapter that specification correctness and failure robustness must

be proven with respect to a particular solution concept that depends on the environment

assumptions. For instance, in a routing problem, the observed local connectivity graph

can be used to make probabilistic assumptions about the types and strategies of other

agents. Mu'alem argues that in such partially informed environments, solution concepts

that are weaker than dominant strategy make sense since participants are partially informed.

Mu'alem focuses on peer to peer file sharing, where a participant's observation of network

traffic (e.g., Node A sent File X via me to Node C) is used to construct an equilibrium

strategy in a trading game using an ex-post Nash solution concept. While Mu'alem's work

acknowledges the threat of malicious players, the work only considers spiteful malicious

players who exclusively seek to maximize the weighted difference of their utility and all

other agents utility (so called q-malicious; cf. Brandt et al. [BSS07]).

www.manaraa.com

Chapter 5

Rationally Motivated Failure in

Interdomain Routing

In this chapter we apply the rationally motivated failure remedy methodology to

an interdomain routing problem based on work by Feigenbaum et al. [FPSS02] (FPSS).

The enhanced algorithm is shown to be faithful under the ex post Nash solution concept.

We implement the algorithm in simulation and compare the message complexity of the

resulting algorithm to FPSS. We show that a node's message cost when running the faithful

algorithm depends on its degree (number of neighbors in the connectivity graph) and that on

a real Internet topology a node may incur a 2x-100x message traffic increase. We show how

this overhead can be reduced to 2x-10x (compared with the unfaithful algorithm) without

serious connectivity consequences when high-degree nodes impose a cap on their number of

neighbors.

5.1 Introduction

The Internet is composed of many autonomous systems (ASs), which are collections

of machines and networks typically named for and under the control of one entity, such as

Harvard University, U.C. Berkeley, Microsoft, etc. The general interdomain routing problem

is defined as the problem of calculating routes between these autonomous systems. The

solution to this routing problem on the Internet is embedded in the workings of the Border

Gateway Protocol (BGP) [GR01]. BGP has evolved over the years, and many researchers

have proposed variants and related protocols that address BGP shortcomings (e.g., security

[vOWK07]) or advocate new functionality.

69

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 70

Inspired by this interdomain routing problem, Feigenbaum et al. (FPSS) [FPSS02]

proposed a routing protocol that finds efficient, i.e., lowest cost, routes between nodes.

Their work is loosely designed to fit within the simplified BGP model of Griffin and Wil-

fong [GW99]. The main contribution of their work is to advocate the inclusion of mechanism

design ideas into routing protocols such as BGP to address rationally motivated failure oc­

curring when participants lie about their transit costs. The FPSS work proposes a payment

scheme that can be used to pay transit nodes for relaying traffic along lowest cost paths.

Their protocol incorporates a Vickrey-Clarke-Groves mechanism [Vic61, Cla71, Gro73] to

guarantee truthful cost declaration from rational compatible participants. Their resulting

protocol is incentive compatible for routing cost declarations under certain assumptions, in­

cluding the strong requirement that participants otherwise follow the distributed algorithm

without deviation.

A Notation on Notation: Both in keeping with the language of FPSS and for the sake

of brevity, we erase the distinction between human participants and their computational

nodes for the rest of the chapter. We assume that every node is controlled by exactly

one rational participant, and that each rational participant controls exactly one node, and

that each participant communicates with other participants through its single node acting

as a communication proxy.

The basic interdomain routing problem that we consider in this chapter is similar

to the problem considered in FPSS. Like FPSS, we seek to build a distributed protocol

for calculating efficient routes between nodes. However, our work differs substantially in

the assumptions and guarantees of the protocol. We expand the set of behaviors that can

be chosen by a node to include all aspects of computation and message passing. In addi­

tion to guaranteeing truthful routing cost declaration and correct lowest-cost path (LCP)

computation by rational compatible participants, we make the following guarantees:

1. Correct LCPs will be used when it comes time to forward data messages. Transit nodes

representing rational compatible participants correctly transit all message traffic when

they are part of the true lowest cost path from source to destination.

2. Transit nodes are correctly paid for transiting message traffic.

There is still a reasonable set of rational behavior that we do not address and

is relegated to the category of rational incompatible behavior. Our protocol cannot avoid

rationally motivated failure due to collusion or a participant's willingness to take advantage

of off-equilibrium behavior that occurs when other nodes exhibit unintentional failure. Like

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 71

FPSS, our mechanism makes the unrealistic assumption of a static environment where

routing costs and paths never change. FPSS and our modified protocol cannot exist as part

of a live system deployment because of these limitations. We view our protocol as a step in

answering the open question posed by Feigenbaum et al. of how "to reconcile the strategic

model with the computational model" in that it shares the same incentive compatibility

properties of FPSS while adding additional algorithm- and communication-compatibility

with an expanded model of participant behavior. We compare the message cost of our new

protocol to that of FPSS by building both protocols in a custom network simulator that

simulates the protocols on actual historical AS topology graphs. We show that a node's

message cost when running the faithful algorithm depends on its degree and that on a

real Internet topology a node may incur a 2x-100x message traffic increase. We show how

this overhead can be reduced to 2x-10x (compared with the unfaithful algorithm) without

serious connectivity consequences when high-degree nodes impose a cap on their number of

neighbors.

This chapter is presented as follows: We first describe the interdomain routing

problem and briefly review the results of FPSS. We then introduce and prove the faithfulness

of FPSS+, which is our modification to FPSS that does not assume correct computation

or message passing. Both FPSS and FPSS+ are protocols to establish lowest-cost paths.

We then introduce and prove the faithfulness of FPSS++ to provide incentives to use the

routing paths correctly after they are established. We close the chapter with an evaluation

of the three protocols as measured in simulation.

5.2 Problem Description

The goal in this chapter is to maximize network efficiency by routing packets along

true lowest-cost paths (LCPs) for various traffic source-destination pairs. Each node incurs

a per-packet transit cost for transiting traffic on behalf of other nodes. The, cost represents

the additional load imposed by external traffic on the internals of an individual node. It

costs nothing for a node to transit a packet originating or terminating at that node.

Example. Figure 5.1 shows a small network. The LCPs from Z to all other nodes are

drawn with bold lines. Numbers are the per-packet transit node costs incurred by each

node. Assuming that the numbers in this figure represent true transit costs, the total LCP

cost of sending a packet from X to Z is 2; the cost of sending a packet from Z to D is 1.

The cost of sending a packet from B to D is 0 since there are no transit nodes between B

and D.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 72

Figure 5.1: A small graph with routing costs for each node, and bold lines showing the
lowest cost paths (LCPs) from Z.

To compensate a transit node for its routing services, each transit node is given a

payment for carrying traffic. FPSS observes, however, that "under many pricing schemes,

a node could be better off lying about its costs; such lying would cause traffic to take non-

optimal routes and thereby interfere with overall network efficiency."

Example. In Figure 5.1, path X-D-C-Z is the lowest cost path between X and Z; if C

declared a cost of 5, X-A-Z would become the LCP between X and Z. C can benefit from

this manipulation, depending on the transit pricing scheme and expected traffic flows. Even

if C no longer transits the X to Z traffic, it can ma.ke up the financial loss with higher

payments received by transiting D to Z traffic. This damages overall efficiency - packets

from X to Z are now being routed over a path whose true cost is higher.

The goal in the truthful lowest-cost routing problem is to promote correct LCP

formation by designing a pricing and payment scheme where nodes receive the greatest

utility when they declare their true transit costs.

5.3 FPSS Interdomain Routing

FPSS solves the problem of computing correct lowest-cost paths for a set of rational

participants by using a distributed Vickrey-Clarke-Groves (VCG) mechanism [Vic61, Gro73,

Cla71]. In the VCG mechanism, transit nodes are paid based on the utility that they bring to

the routing system plus their declared cost. Their resulting protocol is incentive compatible

for routing cost declarations under certain assumptions, including the strong requirement

that participants otherwise follow the distributed algorithm without deviation.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 73

5.3.1 Mode l

Network Model

A network is composed of nodes that are controlled by independent participants

who share the goal of being able to send each other data messages. Two adjacent nodes,

e.g. A and Z in Figure 5.1, can send data messages via their direct link. But when a source

and a destination do not share the same link, e.g. A and J5, these two nodes may still

communicate by sending messages via one or more transit nodes. Transit nodes incur a per-

message cost for transiting messages and can receive a payment from some other node(s)

to cover this cost. The transit cost is the same regardless of message source, destination, or

content. Data messages between two neighbors trivially do not use any transit nodes and

do not incur any transit cost.

Neighboring nodes can also communicate with each other via special control mes­

sages. Control messages are used to set up and administer the routing algorithm. Control

messages always terminate at direct neighbors and thereby never incur a transit cost.

FPSS makes these additional network assumptions: nodes are bi-connected and

links are bi-directional so that there are at least two independent paths from any node

to any other node. There are no networking faults or delays. The environment is static,

meaning that nodes neither enter nor leave the system once the FPSS algorithm begins.

Participant Model

The FPSS algorithm assumes that every node can fully participate in the dis­

tributed algorithm. Functionally, this means that nodes have enough memory to hold the

state information used in an abstract model of the Border Gateway Protocol (BGP) [GW99]

and for the additional overhead required by FPSS. The additional state overhead in FPSS

grows linearly with the number of nodes in the network. There is a set of assumptions that

both restricts the participants and also defines the knowledge model that each participant

in FPSS believes about other participants in the system:

• all nodes will perform all computation and message passing actions completely and

correctly, and no actions outside of the specification will be performed by any node.

• all nodes' information-revelation actions will be type-restricted information actions.

• nodes are rational compatible individual participants and do not collude with other

nodes.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 74

Cross-Field Connection: A reader familiar with mechanism design will notice that

the knowledge model in FPSS is similar to the knowledge model in a centralized strategy-

proof mechanism, in that both models assume strategies limited only to type-restricted

information revelation actions.

We define a rational compatible node to reflect the expected behavior of an AS: A

node has the primary goal of establishing communication paths to other nodes, so that AS

users can send data messages to any destination, and the secondary goal of maximizing:

((incoming payments for transiting data) - (actual cost for transiting data))

- (outgoing payments for originating data)

In FPSS, nodes can do nothing to reduce outgoing payments because of the requirement

of correct computation and message passing actions. Nodes can control their incoming

payments by changing their type-restricted information actions. Feigenbaum et al. show

that truthfully revealing transit costs maximizes a node's utility given the two goals above.

Dependency Model

FPSS requires a set of "accounting and charging mechanisms [that] are used to

enforce the pricing scheme." These logical devices are not detailed in the original paper.

5.3.2 FPSS Algorithm Overview

The structure of the FPSS algorithm is as follows:

• First, nodes publish a single routing cost that is supposed to indicate that node's true

cost for routing data.

• Second, each node builds a local routing table based on its known destinations and

on reachability declarations sent by neighbors. A node's local routing table contains

the routes and routing cost from itself to every other node in the system. This

routing table is published to neighbors and updated as reachability knowledge expands

through claims made by immediate neighbors.

• Third, while routing table creation is occurring, a parallel local computation is run

by every node i to calculate prices that node i owes transit nodes for transiting traffic

that node i originates, for every possible destination. In other words, every node

is responsible for calculating its payments due to transit nodes for all traffic that it

originates. There is no payment due from node i for transiting traffic on behalf of

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 75

Phase Message Sent by node X to neighbor node W
Phase 1: Cost Declaration "I, neighbor node X, hear that node Y costs C"
Phase 2: LCP Table "I, neighbor node X, declare my LCP to node Z to be through

nodes (Y1,...Yj-1)"
Phase 3: Pricing Table "I, neighbor node X:

For some destination node Y:
For each transit node K:

X owes K payment p (FPSS Update)"
Phase 4: Execution "I, neighbor node X, wish to originate packet w to destina­

tion node J".
Phase 4: Execution "I, neighbor node X, wish to transit packet w to destination

node J on behalf of source node J."

Table 5.1: Messages sent in the FPSS algorithm, organized by phase.

another node, and node i is actually due a payment for such transit work from the

original sender of the data traffic.

• Once the routing and pricing tables are established, nodes can begin to send actual

data traffic and are supposed to keep track of payments and periodically report these

to an accounting and charging mechanism.

We find it useful to describe FPSS in terms of three construction phases. We

call these phases "construction phases" because they are constructing the LCPs and pricing

tables that will be used in a later execution phase. We note that FPSS (and our FPSS+

extension) only address rationally motivated failure that may occur in the construction

phases. Later in the chapter, FPSS++ will address rationally motivated failure in execution.

The goals in the construction phases are to establish a routing network by building

a transit node cost list, which is then combined with reachability announcements to estab­

lish routing and pricing tables. The three construction phases are treated as overlapping

calculations in the original FPSS paper, but our alternate description will prove useful in

building our later algorithm extensions. Furthermore, breaking FPSS into phases makes

sense as each construction phase has a goal that must be accomplished before moving on

to the next part of the algorithm. Table 5.1 details the messages that are sent in each of

these phases. The phases run as follows: Nodes broadcast and relay transit-cost information

during the first construction phase. In the first construction phase, nodes make a claim

about their routing transit cost to their neighbors. These neighbors in turn relay the transit

costs to their neighbors, until each node in the network has the same vector of transit cost

data. Nodes compute LCP routing tables during the second construction phase. In

the second construction phase, nodes make LCP routing claims to their neighbors. These

www.manaraa.com

Chapter 5; Rationally Motivated Failure in Interdomain Routing 76

claims inform neighbors of currently known lowest-cost routes to other destinations. This

calculation is performed iteratively, reaching stability in a number of rounds that depends

on the length of the longest path, a.k.a. diameter, or the network. Nodes compute pric­

ing tables during the third construction phase. In the third construction phase, nodes

perform pricing calculations that determine how much that node should pay each other

nodes when originating message traffic. Like the LCP routes, this process is performed

iteratively, reaching stability in a number of rounds that depends on the diameter of the

network. Nodes originate, route, and deliver actual data messages during the execution

phase. FPSS suggests that in the execution phase every node i should keep track of how

much it owes transit nodes as node i originates data messages, and that transit nodes should

send data messages along the LCP paths.

Within the construction phases, we classify the declaration of transit costs and

connectivity information as type-restricted information-revelation actions. The relaying

of other nodes' transit cost announcements are message passing actions. Updating and

forwarding routing and pricing tables are computation actions. While we have described

the messages sent in each phase and the data that is calculated in each phase, we have not

described the local algorithm that each node performs to turn messages into this data. This

calculation is straightforward for the transit cost list, the routing tables, and the payment

tables. As for the pricing tables, for our purposes it is sufficient to know that FPSS embeds

a distributed VCG calculation. We refer interested readers who are not familiar with FPSS

to Feigenbaum et al.'s original paper [FPSS02] to see how the pricing scheme is constructed

so that type-restricted information revelation is truthful given a correct implementation of

the remainder of the mechanism.

5.4 FPSS+: An Extension to FPSS

Feigenbaum et al. close their paper with the open problem that:

On the one hand, we acknowledge that [participants] may have incentives to lie
about costs in order to gain financial advantage, and we provide a strategyproof
mechanism that removes these incentives. On the other hand, it is these very
[participants] that implement the distributed algorithm we have designed to
compute this mechanism; even if the [participants] input their true costs, what
is to stop them from running a different algorithm that computes prices more
favorable to them?

They go on to observe that:

If [nodes] are required to sign all of the messages that they send and to verify all
of the messages that they receive from their neighbors, then the [FPSS protocol]

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 77

can be modified so that all forms of cheating are detectable. Achieving this goal
without having to add public-key infrastructure (or any other substantial new
infrastructure or computational capability) to the BGP-based computational
model is the subject of ongoing further work.

It is here that we pick up with our extensions to the FPSS protocol to bring correct

computation and communication during the construction phases into equilibrium. This

section presents a protocol called FPSS+ that relies on redundancy, incentives, and problem

partitioning to ensure that participants choose to behave correctly. Neither message signing

nor a public-key infrastructure are used to detect cheating. We still find that some signing

infrastructure is useful if nodes do not have trusted communication to the referee/bank.

Given certain network topologies, it may be possible to eliminate signing altogether.1

5.4.1 Mode l

The models that we assume in FPSS+ are refined from the model introduced

for FPSS in the last section. Our goal in this refinement is to make the setting a bit

more realistic. The FPSS+ environment is identical to that of FPSS with the following

exceptions:

Participant Model

As in FPSS, we assume that every node can fully participate in the distributed

algorithm. Our assumption of the goals of a rational compatible node is the same as before:

a node has the primary goal of establishing communication paths to other nodes and the

secondary goal of maximizing:

((incoming payments for transiting data) - (actual cost for transiting data))

- (outgoing payments for originating data)

The change comes in loosening the set of assumptions that both restrict the par­

ticipants and also define the knowledge model that each participant in FPSS+ believes

about other participants in the system:

• nodes are not restricted in their actions during construction phases.

1 We can think of two examples where signed referee/bank messages can be safely eliminated. In the first
example, the network of rational nodes runs as an overlay on top of an obedient underlay. This models
how many peer to peer applications work today, where the application software is untrusted, but where the
underlay is obedient. Any messages sent by nodes to the referee/bank follow the obedient underlay. In the
second example, messages to the referee/bank travel over rational transit nodes that are that are guaranteed
to have no interest in the message. A special case of this scenario is assumed by related work [Bra02] that
requires a fully connected communication graph so that there are no intermediate nodes to worry about.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 78

• nodes are selfish and do not collude with other nodes.

• nodes correctly use the LCPs and pricing tables in the execution phase.

The main advantage of FPSS+ over FPSS is that participants' computation and

message passing actions are not assumed to be correct during construction phases. Rather,

correct behavior will be part of a rational participant's utility-maximizing strategy in

FPSS+.

Dependency Model

In FPSS+, we define the set of "'accounting and charging mechanisms [that] are

used to enforce the pricing scheme" [FPSS02] in FPSS as a requirement for a logical referee

service and bank service. We must also guard against spoofing by relying on a message

authenticity service.

The logical referee service fulfills the enforcement role of "whatever accounting

and charging mechanisms [that] are used to enforce the pricing scheme." The referee in

FPSS+ is a trusted and obedient entity that can perform simple comparisons and enforce

penalties through bank transfers when it detects a problem. The details of this referee are

given below as part of the FPSS+ algorithm. The referee is not as powerful as the tradi­

tional mechanism center: the referee does not actually perform the distributed mechanism

computation and instead only compares results calculated by others. The details of devia­

tion detection are phase specific. In the construction phases, the referee penalizes deviant

nodes by preventing them from moving to the next phase of the algorithm.

The logical bank service fulfills the bookkeeping role of "whatever accounting

and charging mechanisms [that] are used to enforce the pricing scheme." The bank is

characterized by an interface that allows transfers of currency from one participant to

another. We intend the referee service to be the only entity that directly communicates

with the bank. In practice, the node that realizes (implements) the referee logical service

may also realize the bank.

The logical message authenticity service ensures that a message directly re­

ceived by node i marked as originating from node j did indeed originate at node j . This

logical service is required by each node to calculate correct table information and is required

by the logical referee and bank services. We note that the logical message authenticity ser­

vice need not stop a lie: node j can send a message to node i that appears to be a relayed

communique from node k. The only guarantee made by the logical message authenticity

service to node i is that the message in question was last sent by node j . A stronger message

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 79

authenticity service could require and be built around a message signing service. However,

for simplicity we use the approach assumed in FPSS, where the message authenticity service

is realized through direct trusted network connections, and that the network underlay plays

a role in identifying and authenticating messages.

Finally, our proof makes use of hash table comparisons. We assume that a suitable

hashing function is used so as to drive to zero the probability of a node being able to

construct a manipulable hash table collision.

Network Model

We assume that every node has a correct connection path to the logical referee

service, which in turn has a connection with a logical bank service. For simplicity, we assume

that these bank and referee connections are trustworthy, which can be justified in practice

by a secure communication channel.

5.4.2 Checker N o d e s

In extending FPSS to FPSS+ we introduce the checker role for nodes already

participating in the distributed algorithm. We stress that we are not adding new nodes,

but rather giving additional tasks to existing nodes. The assignment of the checker nodes

is very important: every neighbor of a node is assigned as a checker for that node. The

node that is being checked is known as the principal P, to refer to its role in the core

distributed algorithm. Every node in the network plays the role of both a principal node

and a checker node for all of its neighbors. By the FPSS bi-connected topology assumption,

every principal has at least two checker nodes.

Nodes in this checker role are supposed to mirror the principal's computation

actions. A difference between the principal and the checker is that the checker does not

send outputs of computations to neighbors, perform information revelation, or execute

message passing actions. Rather, a hash-value of the output of the computation may be

periodically sent to a special referee node whose role is to look at a set of supposedly equal

hash-values and identify a discrepancy. The checkers allow the referee to catch and punish

nodes that do not behave correctly in the distributed algorithm.

Each checker node is supposed to perform the internal computation of P based

on copies of P's messages that it receives from P. We must establish that the checker will

follow the checking behavior in equilibrium with a faithful P. This will be true in FPSS+

because of problem partitioning — a checker cannot individually benefit from allowing a

deviation by P and may be worse off by allowing the deviation. Moreover, we must show

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 80

Figure 5.2: A computation or message passing deviation by principal node (P) can be
detected by checker nodes.

that P cannot benefit from changing or dropping the messages sent to each checker. Perhaps

surprisingly, we guarantee this property without the use of message signing or encryption:

because of the network arrangement of the checkers, at least one of P's checker's calculations

will differ from the other checkers and cause P to be punished if P misbehaves. It is in P's

best interest to ensure that each checker receives a correct copy of every message that P

receives from neighbors. This claim can be understood by examining the graph shown in

Figure 5.2.

Example. Figure 5.2 illustrates how nodes Ci,C2 and C3 acting as checker nodes can

monitor principal P. In that network, P is supposed to forward m to nodes C2 and C3 to

allow them to replicate P's calculations, but let us say that P deviates and forwards the

message as m'. This deviation will change the view that C2 and C3 have of P's calculation

input, but as checker C\ was on the incoming path of m, it still has the correct view of TO.

The resulting differences in the calculations performed by P , Ci, C2 and C3 are sufficient

to catch a deviation, as we will see later when we discuss the referee actions.

5.4.3 FPSS+ Algorithm Overview

Mirroring our explanation of FPSS, FPSS+ contains three construction phases.

We list the principal node external actions [PA#], checker node external actions [CA#],

and referee actions [RA#] for each phase. Actions are labeled with shorthand for ease of

reference in our faithfulness proof later in the chapter. Principal and checker actions are

further categorized into their information revelation, computation, and message passing

components. Referee and bank behavior are assumed to be correct and therefore is not

checked.

We describe the workings of the algorithm in terms of the three construction phases

and one execution phase in the following sub-sections.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 81

First Construction Phase

Phase Goals: Establish uniform transit cost list. At the end of this phase, every node has

an identical list of node-cost pairs.

[PAO] On startup: Information Revelation: Send truthful private transit cost to neigh­

bors.

[PA1] On receiving transit cost update from neighbor: Computation: Check if

update would cause a transit cost discrepancy, where two different transit costs have

been received for the same node. If discrepancy exists, set discrepancy flag and wait

to be polled by referee. If no discrepancy, update local transit cost list and continue.

Message Passing: Forward complete transit cost information to all neighbors;

[RA1] Periodically, ask nodes requesting the hash of their transit cost list and a discrep­

ancy flag. Once the referee detects that the node reports are consistent and quiescent,

send a message to all nodes initiating next phase. If a discrepancy flag has been raised,

restart the algorithm.

The first construction phase does not need to use checker nodes, since checker

nodes are not used to check information revelation actions (i.e., [PAO]), and every node is

capable of detecting transit cost discrepancies (i.e., [PA1]) in their own roles as principals.

Second Construction Phase

Phase Goals: Each node establishes its correct routing table. Each node's routing

table specifies the route that a packet should follow for each destination from this node.

[PA2] On receiving routing table update from neighbor: Message Passing: For­

ward message to all checkers. Computation: Recompute LCPs based on new informa­

tion; send recomputed LCPs as a routing table update to all neighbors.

[CA2] When the principal forwards a routing update: Computation: Verify that

declared LCP is correct with local cost information. Re-run the LCP routing update.

[RA2] Periodically, ask all principals and checkers for hashes of their routing tables

and check for a deviation. If there is a deviation in hashes, the referee restarts the

algorithm from routing table calculation phase. Once the referee detects that the

node reports are consistent and quiescent, send a message to all nodes initiating next

phase.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 82

Third Construction Phase

Phase Goals: Each node establishes its correct pricing table. Principal i's pricing

table contains the amount of money that principal i should pay each transit node when

principal i originates a packet, for any destination.

The biggest change in the third construction phase when moving from FPSS to

FPSS+ is that each entry in the pricing table is augmented with an identity tag. This tag

identifies the node that triggered the most recent pricing table update. (In the case of a

pricing tie. this tag field contains the union of the nodes that propagated the same pricing

entry.)

[PA3] On receiving pricing table update from neighbor: Message Passing: For­

ward message to all checkers. Computation: Recompute pricing tables based on new

information; update tag information for every changed pricing entry to reflect source

of change; send new pricing tables to all neighbors.

[CA3] When the principal forwards pricing tables: Computation: Ignore messages

with identity tags that are not checker nodes of the principal; re-run the pricing table

computation.

[RA3] Periodically, ask all principals and checkers for pricing table information and

check for a deviation. If there is a deviation then restart the implementation from the

pricing-table calculation phase. Once the referee detects that the node reports are

consistent and quiescent, send a message to all nodes initiating the execution phase.

Execution Phase

As the third construction phase ends, LCP paths have been computed, and every

node i knows the exact amount that it owes to every transit node j each time node i

originates and sends a packet to some destination node k. The execution phase is so named

because nodes now execute the main task of routing data packets along LCPs. The execution

phase runs indefinitely. As in FPSS, we assume in FPSS+ that there is no failure in the

execution phase. This assumption will be relaxed in FPSS++ discussed below.

5.4.4 F P S S + Faithfulness Proof

A proof of FPSS+ specification faithfulness is a certification that rational compat­

ible nodes will choose to follow the FPSS+ algorithm without modification. We now follow

the methodology given in Chapter 4 to prove faithfulness. We defined rational compatible

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 83

node behavior in in Section 5.4.1, and note that the participant model effectively defines

the node strategy space Xm. In the last section, we stepped through the suggested strategy

sm in detail for nodes, breaking out expected node behavior into actions taken as a prin­

cipal and actions taken as a checker. Simultaneously, we defined the intended mechanism

by defining the system outcome g that occurs when nodes follow the suggested strategy -

namely, that nodes will form correct LCPs and correct pricing tables.

Now we must now show that the FPSS+ suggested strategy sm corresponds to

the equilibrium strategy picked by rational compatible nodes, given an appropriate solu­

tion concept. The solution concept that we adopt is ex-post Nash, which is defined in

Section 3.6.3. In an ex post equilibrium no node would like to deviate from its strategy

even if it knows the private type information of the other nodes. Thus, as designers we

can be agnostic as to whether or not nodes have any knowledge about the private type of

other nodes. The main assumption when adopting ex post Nash is that the rationality of

nodes is common knowledge amongst nodes. This corresponds with the knowledge model

asserted in Section 5.4.1. The FPSS+ faithfulness proof will rely on tools introduced in

Chapters 3 and 4 of this thesis, and specifically on Proposition 4.2, repeated here:

Proposition 4.2 (repeated). A distributed mechanism specification m = (g, E m , s m)

elicits a faithful implementation of g(sm{6)) from compatible rational participants when the

corresponding centralized mechanism is strategyproof and when the specification is strong-CC

and strong-AC.

For each construction phase, we must show strong-AC, strong-CC, and consistent

information revelation irrespective of a nodes behavior in other construction phases of the

mechanism. Once this is shown for each construction phase, and with the assumption of

strong-CC and strong-AC in the execution phase, we use Proposition 4.2 to show that the

entire mechanism is faithful.

The key in proving proper behavior in these construction phases is the reliance on

a rational compatible node's desire to reach the execution phase, and in the tension that

naturally arises between nodes acting in the principal role and neighboring nodes that act

as checkers. In proving faithfulness in any algorithm, one must worry about joint deviations

where a node can selectively fail at multiple steps of the algorithm so that the combined

failure benefits the node. We must worry about any joint deviations within a phase, but

since the algorithm checks for correct behavior at the end of each phase, the opportunity

for any such combined deviation is virtually eliminated.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 84

First Construction Phase

We must show that [PAO] and [PA1] are correct. In demonstrating [PAl], we must

show that a principal cannot benefit from dropping, changing, or spoofing another node's

transit cost information [PAl, message passing] and that a principal cannot benefit from

ignoring a detected transit cost discrepancy [PAl, computation].

Proposition 5.1. A node cannot benefit by revealing inconsistent, non-truthful, or incom­

plete cost information about itself to its neighbors in equilibrium. [PAO]

Proof. First, we observe that a node has no incentive to declare a private transit cost that

is above or below its true transit cost. The proof of truthfulness of the distributed VCG

mechanism is given in Feigenbaum et al. [FPSS02], but to summarize: Nodes that run a

distributed VCG mechanism calculate their payment to some on-LCP node i as node J'S

declared cost plus the value that node i brings to the system for being on the LCP. Node z's

raising or lowering of its transit cost is at best a zero-sum game: for every dollar that node i

lowers its declared transit cost, node i brings a dollar more of value to the system. For every

dollar that node i raises its declared transit cost, node i subtracts a dollar of value from

the system, until at some point it is no longer on the LCP and receives no payment and

transits no traffic. By the same logic, node i has no incentive to report its own transit cost

inconsistently, since even if other nodes somehow used differing transit costs for node i, the

payment due to node i is always the same.

Node i has no incentive to refuse to report its own transit cost to any subset

of neighbors. Other nodes establish neighbor connectivity information from transit cost

announcements. A neighbor will refuse routing service to any neighbor that has not declared

a connection, since the neighbor can neither expect nor enforce payment from an initially

hidden node. Moreover, by hiding during the cost announcement, node i cannot be a transit

node on any LCPs and thus (weakly) cannot maximize its utility.

D

Importantly, there is no joint deviation possible between [PAO] and later phases:

a node cannot increase its received payment for transiting traffic for any combination of

its own computation or information revelation actions in any of the construction phases,

beyond what it would receive by declaring its true transit cost. This is because other

nodes pay no attention to pricing updates for some node i when calculating node i's transit

payment. (For the curious, this form of problem partitioning can be seen in Section 6 of

Feigenbaum et al. [FPSS02]. While a pricing update message has the potential to trigger a

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 85

series of pricing table updates on various nodes, each of these nodes ignores the node that

caused the update.)

Proposition 5.2. A node cannot benefit by refusing to report a discrepancy to the referee

in equilibrium. [PAl, computation]

Proof. By the referee's use of hash tables to compare transit cost results [RA1], all nodes'

reported transit cost hash tables must be equal before the first construction phase can end.

By Proposition 5.1, some node i will never benefit from agreeing to a hash table built on

misreporting node i's transit cost. Node i will rationally choose to report the discrepancy

unless the misreporting does not change node i's transit involvement with all LCPs, in

which case neither node i nor any other node either benefits or suffers from the change. •

Any rational compatible node wishes to be on as many LCPs as possible in order

to maximize any incoming transit payment. In order to join as many LCPs as possible,

node i might like to change routing cost announcements so that routes without node i seem

more expensive, and routes with node i seem cheaper.

Proposition 5.3. A node cannot benefit by changing, dropping, or spoofing other nodes'

transit cost information in equilibrium. [PAl, message passing]

Proof. Because the network topology is bi-connected, a single node cannot definitively drop

or change another node's transit cost announcement in that such an announcement will

always flow along at least one other path. Moreover, by Proposition 5.2, the node responsible

for publishing the transit cost path will itself always be weakly better off by disallowing

such a change or omission. Any discrepancy in transit cost tables is caught by the referee

in action [RA1], who will restart the phase if a cost discrepancy is not resolved.

We note that at this stage, a node i can introduce phantom nodes with made-

up transit costs. However, this action has no benefit now, nor can it lead to a profitable

joint deviation with any other phase of the algorithm, since a principal is prevented from

declaring LCPs with false connectivity in the second construction phase. •

Proposition 5.4. By the above propositions, the first construction phase is strong-AC and

strong-CG.

Second Construction Phase

We must show that [PA2] and [CA2] are correct. In demonstrating [PA2], we must

show that a principal cannot benefit from dropping, changing, or spoofing another node's

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 86

LCP routing table updates [PA2, message passing], and that a principal cannot benefit from

mis-computing or mis-reporting its own LCP routing table update [PA1, computation].

Proposition 5.5. A checker cannot benefit from deviating from adopting an invalid LCP

path on behalf of a principal in equilibrium. [CA2J

Proof. A checker node has an innate ability to verify messages based on internal information

that it itself established when acting as a principal. If the principal is correct, then no

checker will choose to deviate in its calculations on behalf of the principal, since deviation

would cause the phase to be restarted. If the principal is incorrect, then the principal must

be consistent in reporting the incorrect calculation to its checkers, or else [RA2] will trivially

detect the discrepancy and restart the phase. So if the principal is incorrect and consistent,

then the only way the principal can benefit is if every node along the incorrect LCP agrees

to the incorrect LCP; otherwise, the principal's packets will be dropped by the first node

on the incorrect LCP path to disagree. By induction, this requires every checker on the

incorrect LCP path to agree with the incorrect calculation. However, the checker will not do

so because such an adoption would lead to its own originated packets being dropped, when

acting in the role of principal, unless every node along the incorrect LCP agrees to the

incorrect LCP. To see why this will never be true, consider some node j that was on some

correct LCP for some source-destination pair, but because of neighbor node fc's incorrect

LCP calculation, is the first node in the incorrect LCP path from source to destination that

is no longer on the LCP. By definition, node j is a checker for node k, and rationally would

never agree to be dropped from the LCP path, since it loses the income from transiting

packets. •

Proposition 5.6. A principal cannot benefit from, dropping, changing, or spoofing another

node's LCP routing table updates in equilibrium [PA2, message passing]. A principal cannot

benefit from mis-computing or mis-reporting its own LCP routing table update in equilibrium

[PA2, computation].

Proof. For any principal-destination pair, one checker must be on the shortest path from

principal to destination. That checker has a correct view of the cost of that path (in its

other role as a principal in the network), because each node has a local transit cost table

by the end of the first phase.

Assume the behavior specified in (CA2]. All checkers ignore LCP information that

is not judged correct through their local transit cost table established in their own role

as a principal. The result is that a principal has no way to successfully change the LCP

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 87

information stored by every checker. Any routing table deviation shows up by comparing

a hash of LCP tables between the principal and its multiple checkers.

We further observe that a principal that insists on using an incorrect LCP in a

later stage will have its packets discarded by the first node not on the true LCP, since

off-true-LCP nodes are not paid for transiting traffic. •

Proposition 5.7. By the above propositions, the second construction phase is strong-AC

and strong- CC.

Third Construction Phase

We must show that [PA3] and [CA3] are correct. In demonstrating [PA3], we

must show that a principal cannot benefit from dropping, changing, or spoofing another

node's pricing table updates [PA3, message passing], and that, a principal cannot benefit

from mis-computing or mis-reporting its own pricing tables [PA3, computation].

As before, faithfulness will depend on the tension between principals and their

checker nodes. However, catching manipulations in the pricing table information is more

subtle, since in the third construction phase a checker node does not have an innate ability

to verify messages based on internal information that it already has in its own role as a

principal. We note that while distributed VCG problem partitioning ensures that a principal

has no reason to modify its newly created outgoing pricing update messages (since its utility

is not affected by changes caused by these messages), a principal might like to change the

pricing table that it must use for its own originated traffic.

Proposition 5.8. A principal cannot benefit from dropping, changing, or spoofing another

node's pricing table updates in equilibrium [PAS, message passing].

Proof. First, assume the checking behavior specified in [CA3] is correct. Now, consider

a principal A and a pair of neighbors B and C. Let A receive a pricing table update

from B. We first, note that if A drops this pricing table message received from B (rather

than forwarding the message to C), an inconsistency results between pricing tables held

by B and C, and therefore [CA3] will cause a phase restart. The same argument holds

for changing, rather than dropping, an incoming message. If a principal attempts to spoof

another node's pricing table update message, this spoof will create an inconsistency in

checkers' identity tag information stored along with the pricing table. This inconsistency

will be caught by [RA3]. •

Proposition 5.9. A principal cannot benefit from mis-computing or mis-reporting its own

pricing tables in equilibrium [PAS, computation].

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 88

Proof. For some principal i to successfully compute and use an incorrect pricing table,

it must convince all of its checkers to also use the incorrect pricing table. But the pricing

update that triggered node i's re-computation has already passed through one of its checkers,

and so any deviation by principal i will be known to at least one checker. The principal

can cause checkers to use an incorrect pricing table only by spoofing a pricing table update

message. By the same logic as in the last proposition, if a principal attempts to spoof

another node's pricing table update message, this spoof will create an inconsistency in

checkers' identity tag information stored along with the pricing table. This inconsistency

will be caught by [RA3]. •

Proposition 5.10. No checker will benefit from deviating from checking actions in equilib­

rium [CA3J.

Proof. No checker will deviate in pricing table calculation if the principal is correct in its

calculation because deviation would cause the phase to be restarted. If the principal is

incorrect but consistent in its pricing table calculation, it seems possible for the principal to

fail in such a way as to benefit a checker if the checker lets the calculation pass as correct.

(This is not active collusion, but the principal could claim to pay more to the checker and

less to everyone else on the LCP path than it should.) However, this error can be caught by

[RA3] because of a symmetry in pricing tables: the price that node i should pay to node j

for transiting traffic to distant node k is exactly the same price that node k should pay to

node j for transiting traffic to distant node i. Because of our assumptions against collusion,

node i and node k have no way to coordinate the selection of an invalid pricing table. In

this situation, accuracy is a coordination device to avoid phase restart. •

Proposition 5.11. By the above propositions, the third construction phase is strong-AC

and strong-CC.

Theorem 5.1. The FPSS+ specification is a faithful implementation of the VCG-based

shortest-path interdomain routing mechanism in an ex post Nash equilibrium.

Proof. All phases of this specification are strong-AC and strong-CC in an ex post Nash

equilibrium, and all phases have consistent information revelation, and the correspond­

ing centralized mechanism is strategyproof. By Proposition 4.2, FPSS+ elicits a faithful

implementation of the VCG-based shortest-path interdomain routing mechanism. •

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 89

5.5 FPSS++: An extension of FPSS+

FPSS and FPSS+ address rationally motivated failure in the construction phases

of an interdomain routing system. But once correct LCPs and pricing tables have been

computed, what assurance do we have that correct packet routes and payments will be

used? Our last extension addresses rationally motivated failure in the execution phase of

the FPSS/FPSS+ algorithms.

5.5.1 Mode l

The network and dependency models in FPSS++ are the same as in FPSS+. How­

ever, we make an important change in the participant knowledge model by not restricting

the participant behavior.

Participant Model

The set of assumptions that both restricts the participants and defines the knowl­

edge model that each participant in FPSS believes about other participants in the system

is as follows:

• nodes are not restricted in their actions.

• nodes are selfish and do not collude with other nodes.

5.5.2 F P S S + + Algorithm Overview

The first three construction phases are the same as in FPSS+. The change in

FPSS++ comes in the execution phase. We add additional state to the system called the

packet transit count list. This list stores a count of the number of packets transited through

the principal by origin. (A packet that originates or terminates at the principal is not

considered a transit packet.) A principal does not keep a packet transit count for itself, as

this state information is only held by nodes in their role as checker.

Execution Phase

Phase Goals: Data packets are sent along lowest-cost paths and corresponding

correct payment reports are sent to the referee.

Unlike previous phases, the execution phase does not end. Rather, the referee

enforces the faithful payment and usage logs by auditing components of the execution,

applying a provably effective penalty to any detected deviation.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 90

[PA4] On originating new traffic: Computation: Increment entries in local payment

table by appropriate transit price amount. Message Passing: Label the source and

destination of the packet correctly and route the packet to the correct next hop of the

LCP for the destination.

[PA5] On receiving t ransi t traffic: Computation: Verify that the LCP for this packet

is being followed and drop packet if verification fails; otherwise: Message Passing:

Forward the traffic to the correct next hop of the LCP for the destination.

[CA4] W h e n principal-originated traffic is seen: Computation: Increment entries in

local copy of the principal's payment list (of transit nodes) by the appropriate transit

price amount.

[CA5] W h e n principal-transited traffic is seen: Computation: Update counts in the

transit table (of traffic transited by the principal on a per-origin basis) appropriately:

A packet that passes through the principal and then passes through the checker decre­

ments the appropriate origin count by one. A packet that passes through the checker

and then through the principal increments the appropriate entry in this list by one.

Referee actions in this phase are:

[RA4] Periodically, request the payment list from all principals and checkers. If the

principal disagrees with the payment entries of any checker, then penalize the dis­

agreeing nodes. The penalty is set to be e (a small positive value) higher than the

sum of all discrepancies in total payments.

[RA5] Periodically, request the transit count list information from all checker nodes.

Check for a mismatch between the total number of packets into and out from a node.

At this stage, if a deviation is found then ask a checking node for the maximal single-

node VCG payment, which is then multiplied by the length of the longest route in

the pricing table and charged to the principal.

5.5.3 F P S S + + Faithfulness Proof

We must show that [PA4], [PA5], [CA4], and [CA5] are correct. In demonstrat­

ing [PA4], we must show that a principal cannot benefit by incorrectly updating its local

payment table or by not updating the payment table at all [PA4, computation]. We must

also show that a principal cannot benefit from incorrectly labeling the source or destination

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 91

of the packet or by routing the packet differently than the correct next hop [PA4, mes­

sage passing]. In demonstrating [PA5], we must show that a principal cannot benefit from

forwarding a packet that it is not supposed to forward [PA5, computation] and that the

principal cannot benefit by dropping, changing, or spoofing message traffic that is supposed

to be delivered to the next hop [PA5, message passing].

Proposition 5.12. A principal cannot benefit by incorrectly updating its local payment table

or by not updating the payment table in equilibrium [PA4, computation].

Proof. Assume [CA4] is performed correctly. Then, any deviation in the local payment

table will be caught by [RA4]. The penalty imposed in [RA4] is constructed to be greater

than any benefit that the principal may have received from a successful deviation. •

Proposition 5.13. A principal cannot benefit from incorrectly labeling the source or des­

tination of the packet, or by routing the packet differently than the correct next hop in

equilibrium [PA4, message passing].

Proof. Assume [PA5] is performed correctly by other nodes on the LCP path between the

source and destination. Then, any modification to the source or destination of the packet

that changes the LCP will trigger the packet being dumped by the transit node that detects

the change, since the transit node can neither expect nor enforce payment for transiting

the packet. The same argument applies for a principal that initially routes the packet to a

node other than to the correct next-hop. A principal i might try to change the source tag of

the packet, in an attempt to make it seem like node i is transiting and not originating the

packet. But this behavior will be caught by [CA5] and [RA5] - namely, the transit count

list will contain a mis-match. The penalty imposed in [RA5] are constructed to be greater

than any benefit that the principal may have received from a successful deviation. •

Proposition 5.14. A principal cannot benefit from forwarding a packet off the LCP path,

rather than forwarding the packet along the LCP path in equilibrium [PA5, computation].

Proof. In FPSS and its derivatives, the transit cost incured by a node is the same regardless

of the destination of the message. Moreover, this behavior will be caught by [CA5] and

[R.A5] - namely, the transit count list will contain a mis-match and trigger a penalty from

[RA5]. D

Proposition 5.15. A principal cannot benefit by dropping, changing, or spoofing message

traffic that is supposed to be delivered to the next hop in equilibrium [PAS, message passing].

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 92

Proof. Changing message content is not beneficial. In FPSS and its derivatives, the transit

cost incured by a node is the same regardless of the content of the message. A drop or spoof

will be caught by [CA5] and [RA5] - namely, the transit count list will contain a mis-match

and trigger a penalty from [RA5]. •

Proposition 5.16. A checker cannot benefit by incorrectly incrementing entries in its local

payment list by the appropriate transit price amount in equilibrium [CA4]-

Proof. Assume [PA4] is performed correctly. Then, any deviation in the local payment table

will be caught by [RA4j. The penalty imposed in [RA4] are constructed to be greater than

any benefit that the principal may have received from a successful deviation. •

Proposition 5.17. A checker cannot benefit by incorrectly updating entries in the transit

table in equilibrium [CA5J.

Proof. The transit table has no effect on the utility of a checker node. •

Proposition 5.18. By the above propositions, the execution phase is strong-AC and strong-

CC.

Theorem 5.2. The FPSS++ specification is a faithful implementation in an ex post Nash

equilibrium of the VCG-based shortest-path interdomain routing mechanism and provides

for faithful usage of the resulting LCP paths.

Proof. All phases of this specification are strong-AC and strong-CC in an ex post Nash

equilibrium, and all phases have consistent information revelation, and the corresponding

centralized mechanism is strategyproof. By Proposition 4.2, FPSS++ elicits a faithful im­

plementation of the VCG-based shortest-path interdomain routing mechanism, and provides

for faithful usage of the resulting LCP paths. •

No Enforcement Against Changing Messages

Note that as described, this execution phase enforces the act of message forwarding

but does not enforce the integrity of the message content. In other words, if node A sends a

message to node B, the execution phase attempts to enforce that a message gets sent from

A to B, and that the payments are recorded faithfully, but does not restrict a transit node

from changing the content of a message.

We feel that this is a reasonable middle ground for a routing algorithm for several

reasons: First, in FPSS++ there is no financial advantage for a transit node to change

the content of a packet. A record exists that compels a transit node to forward a packet

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 93

even before the transit node receives the packet, because of our use of checker nodes and the

packet transit count list. Second, we assume that a routing node has no interest in changing

the content of an application-level message, since there is no connection to the routing node's

utility function. Third, we believe that if required, validation of data messages can be solved

at user-level with cryptographic signing.

All this said, it is possible to extend FPSS++ further to enforce message non-

malleability. One potentially onerous scheme effectively adds "license plates" to packets:

just as checker nodes keep a packet transit count list, checker nodes could also cumulatively

store the hash of every packet that passes through a principal. Just as the packet transit

count list is used to ensure that the number of transit packets entering a node equals the

number of transit packets exiting the node, so too could the incoming hash be compared with

the outgoing hash. An advantage of this scheme is that it does not rely on cryptographic

signing to ensure that message content is consistent. However, we see this addition as

unnecessary for the three reasons stated above.

5.6 Complexity and Simulation

What is the state and message complexity of FPSS+ and FPSS++? As part of our

design process, we built a network simulator that allows us to measure the relative state and

message complexity of FPSS+ and FPSS++ as compared to Feigenbaum's original FPSS

algorithm for all construction phases.

Our custom-built discrete network event simulator maintains the nodes' state in­

cluding a per-node FIFO incoming message queue. When started with a topology file,

each node's state is updated to learn about its direct links as well as its own transit cost.

After loading this information, each node announces its transit cost to all neighbors, thus

starting the first construction phase in the appropriate algorithm. Our simulator services

nodes' queues in a round-robin fashion, processing the oldest incoming message on behalf

of each node and updating that node's state accordingly. Since there is no node failure in

our simulator, the referee is implemented to allow nodes to progress to subsequent phases

when all message queues are empty in the current construction phase. For the following

experiments our simulator uses the Michigan AS topology graph data [Mic08] that lists

interconnected ASs according to the Oregon route-views project [Ore08] for data collected

on May 15, 2002. We start with an AS graph that contains 13,233 nodes. From this graph,

we selected the bi-connected subset of 8927 nodes. We assign a uniform transit cost to each

of these nodes in order to run LCP calculations.

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 94

It is always problematic to select a representative graph to use in a network sim­

ulation. This is especially true in evaluating FPSS and its derivatives, for two reasons:

The first reason is that transit cost must be artificially introduced into the topology graph.

The second and more important reason is that the network topology formed before running

FPSS is likely to be affected by the fact that nodes know that they are running FPSS. As

Feigenbaum et al. observe in their paper, the network graph is likely to depend on "the

incentives present when an AS decides whether or not to connect to another AS." As we

discovered, our experiments stress this likelihood.

Through our simulation, we are able to measure the convergence time of FPSS+

and FPSS++ and verify the convergence time of FPSS, as reported in Feigenbaum et al.

for an Internet topology. FPSS has a convergence time (measured in number of rounds

of updates) of d', whereas BGPs convergence time for the LCP computation alone would

be d\ in the pathological worst case, ^ could be $](n), where n is the number of nodes

of the system. This is a potentially serious problem, but fortunately does not appear in

practice, at least when one examines highly connected Internet-like topologies. In their

original work, Feigenbaum select a 5773-node bi-connected AS graph and compute d = 8

and d' = 11. While we do not have access to their exact topology graph, we calculate a

similar result on the Michigan 8928-node bi-connected topology, where we find d — 9 and

d! = 13. The convergence time (measured in rounds of updates) is the same for FPSS,

FPSS+, and FPSS++.

In their original paper, Feigenbaum et al. analyze the state complexity of the FPSS

algorithm with respect to Griffin and Wilfong's model of BGP [GW99] and show that the

FPSS additions to the BGP algorithm add only a constant-factor increase to the size of the

BGP routing state. Our additions to the FPSS principal state have been similarly small.

Our change to the pricing tables is a tag that identifies the node that triggered the last

pricing update. The majority of our added state complexity comes with the addition of the

checker role, and the added complexity is linear in the degree of a node. In the checker

role, each node keeps a copy of each neighbor's state and additionally maintains a transit

packet count list for each neighbor. The additional list adds negligible state complexity

since each entry in the list is a single integer (the packet count) and in the pathologic worst

case (where a node is on the LCP from every source to every destination) the number of

entries in the list is bounded by n.

At first glance, a linear increase in state seems reasonable. However, one must

then ask about the typical degree of a node. In the Michigan AS topology data, 8413 nodes

(out of 8928 nodes, or 94%) have a degree of ten or less. 8849 nodes (or 99%) have a degree

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 95

00

100

80

40 -

20

0

1 1 1 1 1 1

i 1 1 1 1—' i

1

i
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Fraction of Nodes (cdf)

Figure 5.3: This cumulative distribution plot shows the onus of checking in the Michigan
topology in FPSS+/FPSS++ simply by measuring the degree of each node. For every node
checked, a checker must maintain one copy of the checked node's transit cost information,
LCP routing tables, pricing tables, payment lists, as well as a transit count list. This graph
omits the 30 nodes (0.3%) with the highest degrees, where the node with the highest degree
has 2615 neighbors.

of fifty or less. However, there are some extremely well connected nodes in the AS topology

as captured in the Michigan data; the most connected node has a degree of 2615. This

unlucky node must act as a checker to 31% of the rest of the network! Figure 5.3 shows the

checker burden for the bottom 99% of nodes.

We constructed our simulator to measure the amount of control message traffic

that each node must process for its participation in the construction phases of both the FPSS

and FPSS+/FPSS++ mechanisms. We show total message traffic size instead of message

count to highlight the scalability issues of the algorithms in highly connected networks. The

first and second data columns in Table 5.2 shows the amount of message traffic that a node

must process, for nodes at specific percentiles over the first three construction phases in

the Michigan topology. In this table, total message traffic is measured in megabytes (M).

For any given node in the FPSS+/FPSS++ protocols, the amount of individual traffic a

node receives will depend on: (1) its placement in the network, which affects algorithm

convergence speed and number of updates, (2) the node's degree, which affects (a) the

number of transit cost, LCP, and pricing updates it receives, and (b) the number of nodes

sending messages to check, (3) the size of the network, which equates to the number of

message destinations and size of update messages, (4) the diameter of the network, which

affects the average number of hops to each message destination, which in turn affects the

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 96

Lowest Node
5%

25%
50%
75%
95%

Highest Node

1.1M
1.6M
1.9M
2.0M
2.0M
2.1M

48.6M

2.2M
3.2M
5.7M
9.5M
15.3M
22.7M

4949.5M

Node Percentile FPSS (Mich.) FPSS+/FPSS++ (Mich.) FPSS+/FPSS++ (Mod. Mich.)
2.2M
3.5M
6.2M
10.0M
15.3M
22.7M
189.3M

Table 5.2: Total message traffic measured in megabytes (M) that a node receives in FPSS,
and in its roles as principal and checkers in FPSS+/FPSS++, in the Michigan topology
(data columns 1 & 2) and the modified Michigan topology (column 3).

size of the update messages, and (5) the physical encoding of the message, which affects the

efficiency of the message.

For much of Table 5.2, the news is positive: while there is a notable increase in the

amount of message traffic when we add checker nodes and actions into the system, 95% of

nodes receive message traffic approximately within an order of magnitude of FPSS for the

entire construction of the algorithm. The terrible news comes from the highest-connected

node in the system, which as mentioned above is responsible for checking roughly a third

of the rest of the network, translating into approximately 4.9 gigabytes of messages.

Given this progressive burden, is there anything that we can do to reduce the

amount of message traffic that each node must process? Modifying the communication

network may be a tenable option. One interpretation of the Michigan graph data is that the

peering algorithms in nodes running FPSS++ would likely change their pairing relationships

to account for the increased cost in acting as a checker node. This is especially true once

actual transit cost information is factored in, since higher degree does not necessarily equate

to lowest cost path.

What would be the benefits and costs of re-forming the transit network so as to

force the most well-connected 0.3% of nodes to adopt a lower degree? As an experiment,

we re-processed the Michigan AS topology graph to delete edges, artificially restricting the

degree in the network to a maximum value of 100. Where possible, the new topology was

formed by deleting edges that still left the entire graph bi-connected without the need to

add a replacement edge.

The benefits of FPSS+/FPSS++ running in the reduced-degree topology is the

reduced computation and message burden placed on large-degree checker nodes. The third

data column in Table 5.2 shows the amount of message traffic that a node must process

on the modified topology graph. Importantly, the highest node is able to reduce message

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 97

traffic to 189.3 megabytes, or more than an order of magnitude decrease. Additionally,

by favoring edges that when deleted still leave the entire graph bi-connected, the overall

message traffic in the network goes down substantially. This effect is more pronounced

in topologies where many nodes have degrees greater than two, such as in the Michigan

topology, where gigabytes of checker messages have been removed from the system.

There are two drawbacks to imposing this artificial degree-capping limitation on

the network topology: the first drawback is illustrated by Table 5.2: in some cases, a

two-neighbor node in the Michigan topology was bi-connected via a deleted edge, and a

new edge had to be added to keep the bi-connected property. This translates to a small

increase in the message traffic at the less saturated end of the spectrum, as other nodes

take on these "bi-connection orphans". The second drawback is that by deleting edges,

one is effectively adding hops to certain source-destination LCP routes. This is easy to

understand: whereas the highly connected node had a direct connection to 2614 neighbors

in the original Michigan topology, in the revised topology messages to 2514 of these nodes

involve at least one hop and a transit payment. The increase in LCP path length in the

modified Michigan topology is small: focusing only on affected source-destination routes,

we find that the majority of affected paths add just 1 transit node, with an average number

of 1.4 transit nodes, and a longest path of 5 transit nodes.

Unfortunately, we see no way to maintain faithfulness and to reduce the checking

burden without adding additional infrastructure or re-forming the communication graph.

The straightforward idea to enlist fewer checkers would violate correctness since our proofs

rely on update messages to a principal traversing a checker before reaching the principal,

to ensure that the principal does not change the message before relaying to other checkers.

(This property is used in proving Propositions 5.6 and 5.8, and illustrated in Figure 5.2.)

Moreover, our proof of Proposition 5.5 requires that a node be a neighbor's checker if the

node is on the LCP from its neighbor to any other destination. One idea for reducing

the checking burden may lie in forming "checker subsets" that are responsible for check­

ing calculations that affect portions of the LCP and pricing tables. However, we see no

way to incorporate such a change into our existing algorithm extensions while maintain­

ing correctness. Moreover, it seems that such a change would require the referee to take

on more responsibility in knowing how to interpret the resulting partial checks. We leave

such explorations for future work. We view the cost of checking as the price that we pay

for a faithful specification that does not rely on cryptographic message signing or another

incentive scheme. It is clear that the FPSS+/FPSS+-(- extensions are hindered by their

reliance on checker nodes in highly-connected topologies. However, in situations where

www.manaraa.com

Chapter 5: Rationally Motivated Failure in Interdomain Routing 98

cryptographic primitives are not available or are particularly expensive, it may be possible

to adopt checker-based strategies to avoid rationally motivated failure.

5.7 Bibliographic Notes

The starting point for this chapter was a paper by Feigenbaum, Papadimitriou,

Shenker, and Sami [FPSS02]. Feigenbaum, Ramachandran and Schapira recently re-visited

the interdomain routing problem [FRS06] to propose an incentive compatible routing solu­

tion to a modified problem based on "next-hop" policy routing. Instead of ensuring that

packets are routed along lowest-cost paths, each participant decides among available routes

to a destination solely based on the routes' next hops. They can show that their algorithm

is immune to the types of rational manipulation that we address here for a LCP-based

algorithm and that their algorithm is incentive-compatible in an ex-post Nash equilibrium.

Afergan [Afe03] studied repeated games in networks and shows how the dominant

strategy equilibrium in Feigenbaum et al. (FPSS) is lost when run as a repeated game. Our

revised protocol is sensitive to the same criticism. In other work, Afergan [Afe06] studies

how repeated game analysis can be used to tweak routing protocol parameters to have a

significant impact on the equilibrium.

Feldman et al. [FCSS05] in their evaluation of "hidden-action" packet forwarding

show how incentive-laden all-or-nothing contract offers can be used to achieve communi­

cation compatibility in the FPSS [FPSS02] problem. Taking algorithm compatibility for

granted, they create a revised protocol that achieves a Nash equilibrium in the absence of

per-hop monitoring, and a dominant strategy equilibrium in the presence of an external

obedient per-hop monitoring mechanism.

Levin et al. [LSZ06] posit that the Gao-Rexford model of BGP [GR01] under

an ex-post Nash knowledge model is almost faithful2 and can be made faithful with a

cryptographic route verification procedure. To make this claim, their work assumes that

the cost for transiting traffic is zero. Furthermore, a rational compatible user's valuation

function depends solely on the existence of a stable unchanging set of routes, from itself

to other destinations, at some point in future time. Finally, the authors must exclude

any strategic behavior that would create a dispute wheel [GSW02]. In practice, a rational

participant may choose to violate the Gao-Rexford assumptions in order to selfishly benefit

from the result, and there is no disincentive for this misbehavior.

2Their work does not use the language of faithfulness, but instead implicitly extends the traditional
interpretation of incentive compatibility to include actions beyond information revelation.

www.manaraa.com

Chapter 6

Methodology Applied: Failure in

Distributed Consensus

6.1 Introduction

This chapter returns to the Rational Byzantine Generals problem first introduced

in Chapter 2. We consider the problem of rationally motivated failure in a form of distributed

consensus. We solve this problem by providing an algorithm that solves consensus by

maximizing overall participant utility. This algorithm runs on the same network of users

that provide consensus inputs.

It is no accident that this thesis focuses partly on consensus: First, consensus is

an important systems problem. There are many distributed systems problems involving

consensus, such as scheduling, resource allocation, and leader election. Second, consensus

relies on private inputs from each participant, making the algorithm particularly susceptible

to rationally motivated failures. Third, both the traditional and our modified consensus

problem are well-defined. This allows us to focus on the integration of incentives with other

Byzantine failure techniques. This chapter makes the following contributions:

• It demonstrates how incentives can be combined with traditional Byzantine Fault Tol­

erance (BFT) tools to prevent rationally motivated failure in information revelation,

computation, and message passing, while staying robust to other Byzantine failures

in computation and message passing.

• It presents and evaluates a new distributed consensus problem and algorithm that is

robust to the above forms of failure. This work composes a new consensus algorithm

from two existing algorithms.

99

www.manaraa.com

Chapter 6: Methodology Applied; Failure in Distributed Consensus 100

6.2 Problem Description

The goal in this problem is to construct a consensus algorithm that runs in a

network with a mixture of obedient, rational, and non-rational faulty participants, and

makes a choice decision that maximizes overall participant utility. This goal differs from

previous consensus problems (and the consensus problem denned in Chapter 2) as the same

participants that run the algorithm are allowed to express specific values for different choice

candidates in a decision problem. However, the safety and liveness conditions that otherwise

specify consensus remain the same. The safety and liveness conditions are:

• Liveness Conditions

LI. Some proposed choice is eventually selected.

L2. Once a choice is selected, all non-failing participants eventually learn a choice.

• Safety Conditions

51. Only a single choice is selected.

52. The selected choice must have been proposed by a participant.

53. Only a selected choice may be learned by a non-failing participant.

We add two new safety conditions for value-based consensus decisions:

54. A choice that maximizes overall value is selected.

55. Only truthful values for choices are reported by non-failing participants.

We present the problem in terms of two consensus problems that help describe the

manipulation issues. These problems are Byzantine Generals [LSP82] and consensus via

MDPOP [PPP06]. The former problem addresses Byzantine consensus on "given" private

information, and the second problem addresses rationally motivated failure in the actual

private information revelation.

6.2.1 The Rational Byzant ine Generals Revis i ted

When we last left our generals in Chapter 2, they were retreating from the enemy

city after failing to reach consensus. To pick up the story where we left off, the three

generals encounter each other on the path back to the queen and compare notes on their

recent failed campaign. General 3 breaks down and confesses to the other generals that he

did not follow the queen's algorithm specification. Knowing the temperament of the queen,

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 101

and realizing that they have failed, each general realizes that returning to the queen in this

state is a death sentence.

Being rational generals, the three decide to renounce their loyalty to the queen and

elect to strike out on their own. The generals check their maps and agree to plunder a new

city that lies nearby and split the gold between themselves from their campaign. As before,

the generals agree to approach the city via three different paths and will communicate

with one another only by messenger. After observing the city, they must decide upon a

common plan of action. To avoid any problems this time (or so they think), the generals

change their communication to be the estimate of their utilities, measured in gold pieces, for

both an "Attack" and a "Retreat" battle plan. After establishing agreement on the battle

plan utilities, the generals agree to pick the utility-maximizing decision as their outcome

function. This outcome function means that the battle plan associated with the highest

utility is chosen by the generals. In so selecting this outcome function, the generals meet

Lamport et al.'s requirement that the same robust outcome function be used by all generals.

The generals begin to carry out their plan. Each general approaches the enemy

city via a different route. After observing the city, here is what the three generals privately

think:

• General 1 can see a lot of gold from his vantage point and thinks that his utility for

an "Attack" is 90 gold pieces. However, on his rush to the city, he noticed a small

traveling caravan that could be privately pillaged for 25 gold pieces if his men were

allowed to "Retreat".

• General 2 can see a bit of gold from his vantage point and thinks that his utility for

an "Attack" is 50 gold pieces. A "Retreat" costs nothing to him, but does not help

him either and so General 2 assigns "Retreat" a utility of 0 gold pieces.

• General 3 sees a bit of gold from his vantage point, but once again believes that his

horse will surely be killed in the onslaught. He estimates that buying a new horse

will cost about his share of the spoils, and so his utility for an attack is 0 gold pieces.

Moreover, he also noticed a large traveling caravan that could be privately pillaged

for 150 gold pieces if his men were allowed to "Retreat".

The utilities are summarized in the following table:

In an attempt to satisfy [S4] and [S5], the generals have agreed to use an outcome

function that selects the "winning" choice after summing reported utilities. In this problem,

the utility-maximizing outcome is "Retreat" (a sum of 175 vs. a sum of 140.) This new

outcome function is a step in the right direction; notice that under the old majority vote

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 102

General 1
General 2
General 3

Attack
90
50
0

Retreat
25
0

150

outcome function, Generals 1 and 2 would have voted to "Attack", and the consensus ma­

jority function would be to "Attack". Because the utility-maximizing outcome is "Retreat",

the majority vote violates [S4].

However, this simple change of outcome function is also subject to the same sorts

of manipulations that we discuss in Chapter 2:

• There is nothing to stop the generals from manipulating their declared utilities to

drive their personally desired outcome. As a simple example, Generals 1 and 2 can

overstate their "Attack" utility and General 3 can overstate his "Retreat" utility. The

utility information quickly becomes useless as rational generals attempt to lie their

way into a desired outcome, violating [S5].

• There is nothing to stop a participant from failing. Once again, recall that one

failure in the generals' three-party agreement algorithm with unsigned messages will

detectably destroy the attempted consensus, since this algorithm can only tolerate

up to L^x^J failed participants. We have not denned the utility for each participant

when the algorithm cannot reach consensus (we would need to add a third column to

the utility matrix above), and so we really do not know if General 3 has the option

of exhibiting a rationally motivated failure. But we can speculate: if General 3 feels

that a failed consensus (which saves his horse) is better than the decision to "Attack",

then we should expect General 3 to fail once it learns the utilities of his compatriots.

This chapter proposes a modified consensus algorithm that is utility-based, but

addresses these problems by providing incentives for participants not to fail. This solution is

based on the MDPOP algorithm by Petcu et al. [PFP06], but unlike MDPOP, the algorithm

that we suggest can both tolerate rationally motivated and non-rationally motivated failures.

6.2.2 Faulty MDPOP

MDPOP [PFP06] is a distributed constraint optimization algorithm in which self

interested agents with private utility functions agree on values for a set of variables subject

to side constraints. In this chapter, we describe a simpler version that can solve distributed

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 103

consensus.1 MDPOP provides a decentralized way to calculate a Vickrey-Clarke-Groves

(VCG) mechanism. The algorithm is weakly faithful for an ex post Nash equilibrium solu­

tion concept, in that all participants are rational but will follow a protocol whenever there

is no deviation that will make them strictly better off. To solve a single-variable decision

problem, all participants must be able to communicate with each other without failure, and

every participant has a trusted channel to an obedient bank. The bank is used to collect

taxes and provide payments to participants at the conclusion of the algorithm. MDPOP,

applied to an n-General decision problem, works as follows:

1. The generals form a communication path of length n, labeling the ends head and tail.

This path is the main economy path (P). The generals then form n marginal economy

paths (P_i...P_n), each of length n — 1, where each path omits a different General i.

2. Value information is passed and aggregated from tail to head in all paths. Each

participant sums the payoff information and sends the sum towards the head.

3. The system-optimal battle plan is calculated by the head and passed from head to

tail in all paths.

4. Whenever the battle plan computed in the main economy path and a marginal econ­

omy path that omitted General i is different, each participant j in the marginal

economy calculates a tax for participant i. This tax is j ' s value for the choice selected

in the marginal economy, subtracting j ' s value for the choice selected in the main

economy. This value is then reported to a bank, who imposes this tax.

Example of MDPOP:

Step 1: The generals in the previous section use MDPOP to form a main economy

path and marginal economies. Let us say that the selected main economy path (tail to

head) is 1 — 2 — 3, which forms marginal economies of 2 — 3, 1 — 3, 1 — 2.

Step 2: The head in each economy receives the following values:

P (Main)
P _ i

P-2
P-3

Attack
140
50
90

140

Retreat
175
150
175
25

1 MDPOP can be more general than the single-variable version described here. The additional complexity
needed to support multiple variables is not relevant in explaining our problem. However, the techniques we
use in our paper can be applied to the full MDPOP algorithm.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 104

Step 3: The system-optimal battle plan is "Retreat" in P, -P-i, and P-2-, and

"Attack" in Pl3.

Step 4: The two Generals in P^$ calculate a tax; for General 3: Toa;1(3) = (90 —

25) = 65 and Tax2(3) = (50 0) = 50, or 115 total tax, which is reported to the bank.

The reasoning is that General 3's values caused "Retreat" to be selected and is the only

General who should be taxed. General 3 was still much happier with "Retreat" than with

the outcome where "Attack" had been chosen, even after subtracting the tax of 115 from

the pre-tax payoff of 150 (35 > 0).

Note that if General i is taxed, the value of Tax(i) does not depend on General i's

report. This characteristic is key to a rational agent's truthfulness. If a general overstates

or understates its value for a battle choice, either nothing will change, or the choice will

switch, but the lie will always cause the general to be worse off after paying any applicable

tax.

Petcu et al. [PFP06] effectively demonstrate [L1-L2] and [S1-S5] in their paper

since MDPOP uses a distributed VCG mechanism and their only participants are (in our

language) rational compatible. With Byzantine failures, however, [L1-L2] and [S1-S5] are

no longer assured, as the following example demonstrates.

Example: Byzantine Failure Destroys Equilibrium

MDPOP is shown to be weakly faithful in an ex post Nash equilibrium. This

equilibrium requires an environment with a participant model where all participants are

rational and a knowledge model where the notion of rationality is commonly understood

by algorithm participants. When a Byzantine general enters the system, the ex post Nash

equilibrium may be destroyed. A rational general can no longer assume that truthful infor­

mation revelation, message passing, or computation is its utility maximizing behavior.

Consider the following scenario: General 2 in the previous setup is the middle

general in the 1 - 2 - 3 main economy path. General 2 can change General l's "Attack"

value to be 150, thus changing the claimed utility maximizing decision to be "Attack" (when

the true utility maximizing decision was "Retreat"), and ensuring that General 1 is the only

general to pay tax. The tax that General 1 pays is now greater than its benefit for an attack

(Tax2(l) = (0-50) = -50 and Tax3{l) = (150-0) = 150, or 100 total tax), and General 1

would have been better off not participating in the algorithm (90 < 100). This is of course

just one example of how a particular participant could fail; any participant that fails so as

to disrupt the equilibrium will destroy the faithfulness guarantees made by MDPOP.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 105

1.0

0.8

I 0.6
c o

o
" 0.4

0.2

2 100 200 300 400 500

Number of possible choices

Figure 6.1: Experimental no-fault solution quality of Efficient (MDPOP), Leader's Choice
(FaB Paxos), and Majority Vote (Byzantine Generals) as the number of possible choices is
varied.

6.2.3 Problem Comments

The problem studied in this chapter is to construct a new consensus algorithm.

The goal for the consensus algorithm is to make a decision choice that maximizes overall

value, running on the same network of opinionated participants. For comparison, the exper­

iment shown in Figure 6.1 displays the relative solution quality selected by different known

algorithms when there are no failures. Solution quality measures how well an algorithm

selects a choice that maximizes overall value. This metric ranges from 0.0 to 1.0, respec­

tively indicating an approach that picks the worst or best possible choice. In this simulation

100 participants are given choice-value vectors with random integer values from a uniform

distribution. They participate in each of the algorithms with the same set of values and the

process is repeated and averaged over 100 runs. The average quality of the choice is then

normalized. A score of 0.5 with this distribution indicates an algorithm that scores as well

as picking a random choice since values are picked from a random distribution.

Algorithms that pick the efficient system utility maximizing choice (e.g., MD­

POP) always score 1.0. Assuming that participants do not manipulate their inputs to the

algorithm, a majority vote (as in Byzantine Generals) does better than random for small

numbers of choices. An algorithm that allows a designated leader to pick its favorite choice

is almost akin to picking a random choice; solution quality is slightly better because the

selected choice is always the best for at least one participant. These effects are more or less

Efficient Choice (MDPOP)
Majority Vote (Generals)
Leader Declares (Paxos)

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 106

pronounced depending on number of participants, number of choices, and the distribution

function of used to set the participant's values.

Our goal, then, is to build an algorithm that has a solution quality and rationally

motivated failure tolerance equal to that of MDPOP, but with the traditional fault tolerance

found in a Byzantine agreement algorithm.

6.3 Model

6.3.1 Participant Model

We allow three types of participant behavior:

• An obedient participant instructs its node to follow the suggested specification exactly

without incentives. There is no minimum number of obedient participants in the

decision problem, although we will assume one infrastructure node as described below.

• A rational (compatible) participant is capable of directing its node to fail in order to

achieve a preferred consensus outcome. We target a k-partial ex post Nash knowledge

model as described in Chapter 3. This model means that that rational participants

believe that a minimum number of participants is guaranteed not to exhibit non-

rationally motivated faults. We will aim to make k as small as possible, and later in

the chapter we will see the trade-off between a smaller k and the message complexity

of our proposed solution. There is no limit to the number of rational participants in

the system.

• Byzantine participants direct their nodes to express arbitrary failure. There is no limit

on the number of Byzantine participants in the system, but we do assume a maximal

number of simultaneous non-rationally motivated faults, as described below. A bound

on simultaneous Byzantine faults is standard in other BFT algorithms [CL99, Rei95].

Remark 6.1. We support an unlimited number of rational participants but do not need to

bound the number of simultaneous rationally motivated faults. In equilibrium, the rational

participants will not exhibit rationally motivated failure.

Remark 6.2 (Crazy Millionaire Problem). Value is in the eye of the beholder, and it

is impossible to distinguish between rational participants and users that are consistent but

foolish in their value reporting. For example, a participant can declare an arbitrarily high

value for a certain choice. This node could be "stuck" and always declare $1,000,000 for

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 107

the first choice it sees, regardless of what choice appears first. This is indistinguishable from

the rational participant that has value $1,000,000 for some choice, which just happens to

appear first in the list of choices. Such participant errors in private information revelation

are neither studied in traditional system failure models, nor are they a behavior model that

is studied in our thesis.

Somewhere in the system, we assume that there is a participant that is capable

of correctly running some trusted components. One of these components is the role of

the referee. The referee will not participate in the decision problem, and its tasks will be

described later in this chapter. We require three other trusted components, described as

logical devices: an unforgeable signature device, a bank device, and an anti-collusion device

as described in the next section. It is unlikely that any of these trusted components can be

distributed to non-trusted participants.

6.3.2 Network Model

Nodes are connected via an Internet-style network. The network may temporarily

delay, duplicate, re-order, or fail to deliver messages. However, we assume that communica­

tion faults are eventually rectified via transport layer protocols. We require that all nodes

be able to communicate correctly, though possibly indirectly, with the node running the

trusted referee service. Wc require subsets of nodes, defined in the next section as cliques,

to communicate directly with each other.

6.3.3 Dependency Model

We will build our remedy on top of logical dependencies, as described in Sec­

tion 6.4.1, and as realized in Section 6.5.2. We assume that there is nothing exogenous to

the system that would prevent new manipulation opportunities.

6.4 Remedy: The RaBC Algorithm

We now present the manipulation remedy, in the form of a distributed consensus

algorithm called RaBC (for .Rational .Byzantine Consensus). An overview of this algorithm

is shown in Figure 6.2, and a graphical example follows later in the chapter. The RaBC

consensus algorithm selects a choice for a variable. Each node2 has a private value for

2We follow the convention from the last chapter and refer to the node in the algorithm, instead of
belaboring the relationship between the human participant and his/her computational node that actually
participates in the distributed algorithm.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 108

each choice. Nodes assign negative values to choices that are undesirable and zero value to

indifferent choices. The list of values for each choice is the node's choice-value vector. The

goal of RaBC is to select the choice that is the most value-maximizing in total out of all

choices and value declarations made by nodes. Formally, we wish to satisfy aforementioned

liveness and safety conditions [L1-L2] and [S1-S5]. Consensus is calculated by the same

set of nodes with an interest in the consensus decision. Rational nodes receive appropriate

incentives and will choose to make truthful value declarations and obediently participate in

computational aspects of the algorithm. Failures are divided into faults and halts. Nodes

report proof of faults and claims of halts to a trusted node called the referee. A rational

node is always better off reporting failure when it occurs. Fault proofs cannot be faked,

and faking a halt claim yields no benefit when the halt does not exist. Nodes cannot spoof

the proofs or claims of other nodes. Failed nodes are penalized and excluded by the referee,

who then restarts the consensus.

By introducing the limited reliance on a trusted referee, RaBC trades off the

elegance of a fully distributed algorithm for the pragmatic considerations in building a

system provably robust to rationally motivated failure. The consensus is divided into smaller

computation and agreement problems for scalability reasons. The algorithm trades off

scalability for non-rational fault tolerance.

6.4.1 Logical Dev ice Dependencies

Chapter 4.4.3 explained the utility of building a remedy that relies on logical

devices. These devices are integral to the success of RaBC, but their implementation details

are separate from the RaBC algorithm. This section describes the logical devices that

are required by RaBC; in Section 6.5.2 we describe how these devices are realized in our

implementation.

Unforgeable signature device

RaBC requires an an unforgeable signature device to prevent spoofing, replays, and

message corruption. Our reliance on signing and consequential assumptions are similar to

other practical systems that detect and recover from Byzantine manipulation [CL99, Rei95]

where private information is not involved. In this thesis, we will denote a message that

is signed by node i as (message)^. The realization of this device, through a public key

infrastructure service, is described in Section 6.5.2.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 109

Bank device

We require a non-faulty bank service. The bank is dormant during normal oper­

ation but coordinates currency transfers ordered by the referee. As in real life, the bank

provides a trusted external way to enforce currency transfers. The bank is implemented by

a trusted node. The realization of this device, through a reliance on an existing Internet

banking mechanism called PayPal [Pay06], is described in Section 6.5.2.

Anti-collusion device

Our algorithm uses a Vickrey-Clarke-Groves (VCG) mechanism, which is suscepti­

ble to collusion problems. These collusion problems can be group-collusion through coordi­

nated efforts of several nodes, or self-collusion where a single node performing a Sybil iden­

tity attack [Dou02] claims multiple identities. We require an anti-collusion device that can

address group- and self-collusion. The realization of this device, through a Tor anonymizing

network [DMS04] and an external identity check, is described in Section 6.5.2.

6.4.2 Algor i thm Mechanics: The Suggested Strategy

Rather than stating a full (huge) strategy space E m and corresponding outcome

function g(-), we can provide a suggested strategy sm in the form of an algorithm and

show that this algorithm is equilibrium behavior for all rational compatible nodes, given a

relevant solution concept in our target environment. For now, we focus on simply defining

sm; we show how sm satisfies this requirement later in the chapter.

The suggested consensus algorithm operates by summing up node values for each

possible choice for a variable and selecting the choice with the highest value, as in MDPOP.

Like the MDPOP example in Section 6.2.2, the algorithm calculates the choice in a main

economy and in a set of marginal economies. As before, each marginal economy omits

a different node. Unlike MDPOP, the RaBC algorithm runs many small compute-and-

agreement phases among cliques of nodes in the main economy. The cliques are ordered

along a line with the tail clique connected via intermediate cliques to the head clique. After

the choice is made in the main economy, the nodes locally compute the marginal economy

choice. Taxes are collected by the referee when the main economy choice differs from any

marginal economy choice. At a high level, nodes should follow the suggested algorithm.

The overview of this algorithm is shown in Figure 6.2, and an illustrated example is shown

in Figures 6.3 and 6.4.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 110

Bootstrap
1. Each node learns of and declares interest in the choice variable to the referee.
2. The referee presents the participant vector to each node, defining cliques and economies,
and activating the tail clique of the main economy.

Consensus in Main Economy
3. Each node in the active clique declares its input (initially its choice-value vector) to all
nodes in its clique.
4. Each node in the active clique validates the received input, sums all vectors, and
performs agreement on the summed choice-value vector.
5. If a node belongs to as-yet unactivated adjacent cliques, it takes the agreed sum as its
new input and jumps to Step 3 in the adjacent clique, activating that clique. Steps 3-5
are repeated until the consensus decision is performed at the head clique.
6. The optimal choice is selected by the head clique and propagated to all nodes from
head to tail clique.

Consensus in Marginal Economies
7. Every node i who has learned node fs choice-value vector computes the choice in
the marginal economy excluding node j . If this choice and the main economy choice are
different, the marginal economy choice is propagated to all nodes.

Tax
8. For each choice that is different in the main and a marginal economy excluding node j ,
each node i calculates a portion of j ' s tax bill. The bills are sent to the referee, who then
imposes a tax on node j .

Failure Detection and Reporting
9. While the above phases execute, each node detects any failure by another node. In
the case of a fault, nodes send a proof to the referee. In the case of a halt, nodes send a
claim to the referee for further investigation. The differences between faults and halts are
discussed in detail in Section 6.4.7.

Figure 6.2: Overview of the suggested algorithm.

6.4.3 Boots trap

The bootstrapping process starts as nodes signal their intention to participate in

the decision problem by proposing choices for the decision variable to the obedient ref­

eree node. At some point in time, the referee stops accepting new proposals and fixes the

variable's choice domain. Nodes learn the final choice domain and calculate their value V

for each possible choice C. A node i commits to participating in the consensus by send­

ing the referee its highest and lowest valued entries in its choice-value vector. These two

messages are ((C, V)max)ai and ((C, V)mm)ai, using the {msg)ai signing notation described

in Section 6.4.1. These two entries are part of the full choice-value vector (C, V)i. Once

nodes have committed to the decision problem, the referee signals the start of consensus by

sending to each node i the following information:

• P, the participant vector, a random permutation of the n nodes.

www.manaraa.com

Chapter 6: Methodology Applied; Failure in Distributed Consensus 111

(C,V)W

+ R

Bootstrap: Step 1 Bootstrap: Step 2

From this information, nodes form cliques in main and marginal economies.
Main economy P has 5 cliques:

2
/ " \

1 V (3

2) _(4
\ /

4
/ " \

3 V Y 5

4)_(6
\ /

6

Marginal economies P have 4 cliques; e.g., P :

2) \ 5
\ /

/ \
^)-(3

/ \
3)-(6

5 __{ 7
\ /

The cliques are (by design) overlapping, sharing (q-1) nodes:

Main economy (cliques collapsed):
/ \><y \ > C / \

Marginal economy example P4:

(cliques collapsed) (1

Figure 6.3: RaBC in action: bootstrap phase.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 112

Tai C
li

•9
CD

m (A) (e)
w N KA yy

, ,^/ y-~y y V V ~\ i f «-(5) -(7; K-^J ^& v_y v—V

H
ea

O liq

CD

Tail clique activated after bootstrap
(dark nodes = currently activated)

s
§ l 1

2) (4) (6

3") (5

x
CD
0)
Q.

O
7) f

CD

Consensus (Main): Step 5

I

Consensus (Main): Steps 3-4

i
Q
xT
c
CD

/ \ / \ / y _ o

7 if
CD

Consensus (Main): Step 6

Consensus in marginal economies example: Let P , P choice be same as main
economy. Let P , P choice be different from main economy. (P , P , P not shown.)

«H!)
I$~(^5

2) U |»
/ \ s ,y

1 ^t1i~i i i , i 7

Marginal economy example P

Marginal economy example P :

Marginal economy example P :

Marginal economy example P : /" \ / \ /

0)*®"®
Consensus (Marginal): Step 7

*§A6

/ X / \

3V(V)"Y7

Node 1 will
not owe tax.

Node 4 will
not owe tax.

Node 2 may
owe tax.

Node 7 may
owe tax.

Figure 6.4: RaBC in action: consensus phases.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 113

• q, the size of each clique, q is tuned by the system designer based on the number

of simultaneous non-rational faults / that must be tolerated. Raising the value of q

raises the number of non-rationally motivated faults that can be tolerated. Yet, it is

advantageous to keep q small for scalability reasons, since the number of messages in

our algorithm grows with clique size. Section 6.5 discusses the trade-offs in picking

an appropriate q, given / . We pick q — f + 2 and / = 1 to keep our examples simple

in the first half of this chapter.

• ((C, V)max)aj and ((C, V)mm)aj for each node j in a clique where node i is also in

that clique.

P is used to define the main economy, marginal economies, and clique sets in each economy

as follows: The main economy is simply set to the value of P. The n marginal economy

paths are created by removing a single node from P. For example, the marginal economy

path3 without node j is set to P with node j removed, and is denoted P-j. Cliques are

formed as the set of q adjacent nodes in P. There are (n + 1 - q) such cliques. The clique

with the first q adjacent nodes is called the tail clique, and the clique with the last q adjacent

nodes is called the head clique.

6.4.4 Consensus in Main Economy

The nodes in the tail clique are the first to be active in the algorithm. Nodes

not in the tail clique wait to hear from another node before running their portion of the

algorithm.

The consensus process starts when each active node i sends its signed choice-value

vector (C, V)^. to all other nodes in its clique. All nodes in the clique gain a consistent view

of all choice-value vectors in this clique. These nodes now execute an agreement on the sum

of the choice-value vectors. In effect, each node in a clique is computing the choice-value

sum for all nodes up to an including those nodes in this clique.

With the sum in this clique agreed upon, the algorithm proceeds through the next

cliques. Adjacent cliques share q — 1 common nodes, and these common nodes use the

result of the last clique's agreed sum as their input for the next clique. Only the newly

activated node in the new clique need declare its private signed choice-value vector. This

process (declaration of inputs, agreement on sums) continues through the cliques until the

messages reach the head clique.
3While the marginal economy vectors are helpful in explaining the algorithm, note that the bulk of RaBC

only runs in the main economy. Unlike MDPOP, marginal economy calculations are local decisions.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 114

When the process reaches the head clique, the head clique's nodes are able to select

the optimal choice C(P) which is the entry in the summed value-choice vector that has the

highest value. Other nodes learn about the choice when the signed and agreed summed

value-choice vector is passed back down toward the tail.

6.4.5 Consensus in Marginal Economies

After the main economy's final summed value-choice vector is passed down through

the nodes, each node is responsible for calculating the marginal economy choice. Every

node j ' s private value-choice vector is known by q — 1 other nodes. It is the task for this

set of nodes to calculate the marginal economy choice C(P-j) by subtracting (V,C)a. from

the main economy's final summed value-choice vector and selecting the choice that has the

highest value. If the choices in the P and P-j are different, the choice of the P-j economy

is propagated both up and down the line.

6.4.6 Tax

Taxes are a normal part of algorithm operation, and are distinct from penalties

imposed in case of failure. Similar to MDPOP, tax bills are calculated by nodes and enforced

by the referee.

Tax is collected whenever the choice selected in the main and any marginal econ­

omy are different, and is an important mechanism for preventing rational manipulation.

Whenever a node i learns of a different choice in the main and a marginal economy that

omitted node j , node i calculates a tax Ti(C(P-j)) for node j . This tax is i's value for the

choice selected in the marginal economy subtracting i's value for the choice selected in the

main economy, or Vi(C(P-j)) — Vi(C(P)). These tax calculations are agreed upon by every

node k who knows node i's private value. Once agreed upon, tax calculations are sent to

the referee.

6.4.7 Failure Detec t ion and Report ing

Failures are divided into faults and halts, regardless of the rationality underlying

the failure.

Faults

A fault occurs whenever a faulting node provides "bad" data to another node. If

a fault occurs, at least one node in the system has the ability to present a set of messages

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 115

to the referee that together act as proof of faulty behavior. Because of the simplicity of

RaBC, all faults are eventually represented in one of four types of error:

A Signing Inconsistency occurs when a message does not match its signature.

These bad messages are simply ignored as noise.

An Agreement Inconsistency occurs when a set of messages, each supposedly

for the same calculation, are inconsistent in their contents. This can occur when agreeing on

the summed choice-value vector or when agreeing on the amount of tax to charge another

node. If a fault occurs during agreement, a node asks other nodes in its clique for help

in finding the Message Inconsistency (discussed next) that caused agreement problem, and

presents this as a proof to the referee.

A Message Inconsistency occurs when a set of properly signed, supposedly

identical messages are inconsistent in contents. For instance, some node i may share its

value-choice vector but claim different values (C,V)a. and (C,V')a. to different nodes.

Because these messages are signed, the inconsistency is apparent to anyone who acquires

and compares both messages.

An Out of Bounds Input occurs when a node attempts to declare a choice-value

vector that violates or restates the initial minimum/maximum declaration to the referee.

Catching this fault is important for rewards and penalties, as discussed in Section 6.6.3.

Halts

A halt occurs whenever a halting node stops participating in the algorithm. Halt

detection by nodes is not required (but speeds up algorithm execution) as the referee will

eventually detect halts on its own according to a preset timeout. Unlike a fault, there can be

no signed proof offered by a node for a halt. A halt is suspected by nodes in a clique when

a node is activated but then waits longer than the message delivery timeout. A suspected

halt report to the referee contains the halting node identity and a description of the missing

data. The referee investigates the report and either verifies the halt or collects and delivers

the claimed missing data back to the reporting node.

6.4.8 The Referee

The referee is used to bootstrap the algorithm and to collect taxes after the consen­

sus decision is made. It is intended to be as lightweight as possible, while still guaranteeing

that our penalty enforcement mechanism functions correctly.

If there are no failures, the referee does not communicate with nodes while con­

sensus is being decided. After a choice is selected, nodes report tax bills for other nodes to

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 116

the referee, who in turn debits the bank account of the taxed node. In our scheme, taxes

are kept by the referee, perhaps to offset any cost of running the consensus infrastructure.

Other work explores schemes to redistribute collected taxes back to participants in systems

with no failure [PFP06, Cav06].

Remark 6.3 (Paying Taxes). We assume that nodes can and do pay their taxes. If non­

payment of taxes is a concern, perhaps due to the "crazy millionaire" problem discussed in

Section 6.3.1, the referee may require that nodes submit a monetary bond before starting

the algorithm. Node i 's maximum bond amount can be conservatively calculated as:

\ ^/-trmax \rmin\

—i

This amount, easily calculated by the referee before it starts the consensus, is the worst-case

amount that node i will need to pay in taxes, which occurs when its preferred choice is

selected, but its presence causes the choice to switch from the common "best" of every other

node to the common "worst" of every other node.

If there are failures, the referee runs a recovery and penalty enforcement algorithm.

During failure handling, the referee has the power to:

• certify a fault or halt condition, which may involve querying nodes to check for halt.

• choose an appropriate penalty, and notify the bank accordingly.

• restart the consensus algorithm to exclude fault or halt exhibiting nodes from the

algorithm.

Looking at each of these in turn:

Certifying Faults and Halts

Faults, as opposed to halts, are presented to the referee as proofs. These proofs

are signed inconsistent message bundles, as discussed in the previous section. Proof bundles

cannot be faked, because their components are signed by the faulty node.

Halts involve more work on the part of the referee. A halt check can be triggered

in one of two ways. The first way is that a node i can submit a halt claim to the referee,

declaring the suspected node j and the type of information that node i is expecting to

receive. The second way is that the referee can decide that too much time has passed

with no consensus result from an economy, and instigate a halt check on its own. The

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 117

referee is able to estimate when consensus should end by bounding the communication and

computation time of any step in the consensus algorithm, and by multiplying these times by

the number of messages and computations in a correct consensus. When this time expires,

the referee executes a binary search along the participant vector to find the node who is

not responding. Correct nodes reply to the referee with a message indicating their status

in the algorithm. If node i claims to be waiting for information that is provided to the

referee from some node j , the referee gives this missing information to node i and resets its

timeout. Only if a truly halted node is identified will that node be penalized and excluded.

In this case, any correct nodes that reported the true halt node are rewarded. The referee

is thus able to identify a halting node or enforce progress when a node is delayed.

Rewards and Penalties

The referee rewards nodes that correctly detect problems, and penalizes nodes that

do not report detectable problems reported by others, or falsely report problems that do

not exist. Byzantine and obedient nodes' behavior are (by definition) not affected by the

choice of penalty or reward. The incentives must be chosen so that it is always in a rational

node's self-interest to report an actual fault, and never attempt to forge a fault.

How does the referee choose the incentives? Nodes actually tell the referee the

minimum reward required to guarantee that any rational node will choose to report an

observed failure. This reward R4 for node i is:

2(v;nax - V7"n) + e

where e is a small positive value. To see this, let the true consensus choice be C but let

node j cause a fault that forces the choice to be C . We seek a reward Ri for node i that

bests all possible benefits to node i of node j ' s manipulation. Node i would maximally

benefit if V*(C") := V?nax and V$(C) := V™m, and any tax due from node i is reduced to

zero. An upper bound on tax is V"mx - Vmm, which should be interpreted as the maximum

amount that node i can hurt the selection of a different choice preferred by other nodes in

the consensus. (In the most expensive tax case, node i declares a large positive V-™x for

its selected choice and large negative V"lms for other choices.) Setting node i's reward to

be greater than the possible benefit equals (V{nax - V^in) + (^ m a x - V{nin) +1. Later, we'll

see why V^max and V"an will be reported truthfully.

Node j , identified as faulty, is fined the reward and excluded from the consensus

algorithm. Any other node k in i's clique was (by algorithm construction) also active and

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 118

should have identified the fault. If node k does not do so, it in turn is considered faulty,

fined the reward, and excluded from the consensus algorithm. Finally, if any node falsely

claims a failure that is a bad proof or cannot be validated by the referee it is fined e.

There is one subtlety to the reward structure. In equilibrium, the referee will

reward a reporting node with a small e, instead of the potentially large R4 calculated above!

This will be explained in the proof of reliable deviation reporting in Section 6.6.3.

Restarting Consensus

At any point in the algorithm, the referee may send a restart interruption to all

nodes. This restart signals that the referee has confirmed a failure and is excluding the

failed node. All other nodes will restart.

Remark 6.4. It is tempting to ask if the referee can be distributed across the same network

of rational nodes that runs the consensus. We believe the answer is that there will always

need to be some obedience in the protocol. Our reasoning is that part of the referee's job is to

coordinate tax payments. With a distributed referee, there would need to exist a mechanism

to check that rational nodes correctly implement the tax payment coordination. And then

there would need to exist a mechanism that ensures that these checkers checked correctly.

(The problem continues ad infinitum.) One option is to distribute the referee across rational

nodes with no interest in the problem outcome. However, in this chapter, we opt for a

centralized referee that has very little work in the (expected) common no-fault case.

Remark 6.5. The reader might wonder why, if we assume some trusted point, can we

not let this trusted node perform the complete consensus? One reason for distribution is

scale, as the distributed consensus breaks down the main and marginal economy calculations

into tractable chunks that can be handled by many nodes in small pieces. Distribution

is appropriate when there is a large amount of local information, such as in RaBC's tax

calculation. Another reason may be privacy; with distribution, a center does not learn the

details of nodes' private values. Greenstadt has evaluted the related DPOP algorithm and

shows the advantages of distribution as measured by privacy loss [GGS07J.

6.5 Analysis, Implementation, and Evaluation

6.5.1 Experimental Setup

Nodes and the referee are implemented according to the default strategies de­

scribed earlier in this chapter. Our implementation takes advantage of the following fault-

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 119

recovery optimization: a referee restart interruption need not completely restart the con­

sensus. Nodes can re-use previously known value-choice information across restarts, and all

calculations, up to and not including the cliques involving the failed node. The actual RaBC

clients are distributed as Python client scripts to make it easy for any user to change node

behavior. Of course, a rational user should choose to run the suggested implementation of

RaBC as-is.

Paxos Comparison

Lampson provides a short overview for those readers unfamiliar with Lamport's

original Paxos protocol [Lam98, LamOl]. Paxos poses a consensus problem in terms of three

classes of agents: proposers, acceptors, and learners. True to their names, the proposers

propose values, the acceptors together work to select a single consensus value, and the

learners are those nodes that learn the selected value from the acceptors. Participants

in the Paxos protocol select a proposer as the leader of a decision problem, who in turn

communicates with acceptors to produce a consistent decision.

For experiments involving Paxos, we chose to implement a "modern" version of the

Paxos protocol in the form of FaB Paxos [MA05]. FaB Paxos [MA05] is a recent update of

the Paxos protocol that guarantees safety even in the Byzantine fault model and has been

optimized for the non-faulty case. We wrote our own implementation of the FaB Paxos

protocol based on the pseudo-code listings and descriptions given in Martin and Alvisi's

original paper.

In the Paxos-based experiments found in this chapter, one node becomes the leader

and selects the choice that maximizes its value. We set the proposal number defined in Paxos

to be the highest value that a node has for any choice, taking care that these values are

unique across nodes. We follow the optimization heuristic given by Lamport [LSP82] where

nodes abandon their attempt to become leader if they detect some other node with a higher

proposal number. Paxos nodes execute in a random order, not tied to their proposal value.

MDPOP Comparison

For experiments involving MDPOP [PFP06], we wrote our implementation based

on the pseudo-code listings and descriptions given in Petcu et al.'s original paper. Our

MDPOP implementation follows the optimization suggested by Petcu et al. [PFP06] where

cliques in marginal economies re-use any relevant work done in the main economy. An

example of the basic algorithm was given in Section 6.2.2.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 120

6.5.2 Logical Device Realizations

This section describes the implementation of the logical devices defined in Section 6.4.1.

Unforgeable signature device

Nodes use cryptographic public-key signatures [RSA83] to approximate an un­

forgeable signature device. Our algorithm therefore relies on a public key identity (PKI)

layer implemented on top of Cryptlib [Cry07] that permits nodes to learn and verify each

other's public keys. We assume that nodes are computationally bounded and (with very

high probability) are unable to subvert the cryptographic primitives.

Bank device

Our bank is a "real" bank implemented using a commercial system called Pay­

Pal [Pay06]. Our referee implementation uses PayPal's SOAP programmatic interface to

access node accounts. The referee, as the entity that activates payment transfers, makes

direct calls to the PayPal bank.

Anti-collusion device

There are two techniques that we can use to mitigate collusion. Although we can

do nothing to eliminate collusion between nodes before they enter the system, we can address

collusion attempts that would occur after nodes enter the system and negotiate to form a

collusive group. In order to mitigate this type of group collusion, we run our system on the

Tor [DMS04] anonymizing infrastructure. Tor is an implementation of onion routing [Oni03],

which enables users to communicate anonymously on the Internet. Tor provides a standard

network interface, and our code runs on top as a normal network application. In order to

provide true end-to-end anonymity and message filtering, we implemented a simple trusted

Tor relay service. This relay service coordinates with the referee so that the relay can be

an intermediate destination and source for inter-node messages. The relay service passes

messages that conform to the limited vocabulary of the RaBC algorithm. Nodes send their

messages to the relay service, which then strips sender information and relays the message

to the true destination. Because of the strong anonymity properties of onion routing, the

relay provides the only means for one node to contact another node. A collusive negotiation

cannot occur out of band, since each RaBC participant only knows the true identity of a

relay node and an outwardly meaningless coded identity at the other end of the conversation.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 121

Section 6.4.1 also declared the need to rely on an identity check to prevent Sybil

attacks. Requiring a node to have a unique bank account seems like a reasonable, though

not foolproof, option. PayPal in the United States restricts accounts to one per social

security number and has the outside machinery to enforce their policies.

6.5.3 Benchmarks

This section evaluates the effectiveness, impact, and cost of the RaBC remedy.

We show RaBC's choice-optimality fault tolerance as calculated in the best/worst case and

measured experimentally in the average case. We show RaBC's message requirements and

message scalability, using Fast Byzantine Paxos (FaB Paxos) [MA05] and MDPOP [PFP06]

as references in the no-fault case.

Our message analysis is not intended to show the "best" algorithm; such an inter­

pretation is not appropriate because of the unbridgeable difference in fault models assumed

by each algorithm. Rather, these comparisons convey the relative trade-offs facing the

system designer in supporting different fault models and algorithms.

Choice-Optimality Fault Tolerance

How many faults can RaBC tolerate? RaBC's reliance on a referee as the final

certifying authority assures traditional consensus correctness. However, aforementioned

safety conditions [S4] and [S5] can be newly violated: we should understand the number

of non-rationally motivated failures that will break these new conditions. We look at this

measurement in a best, worst, and experimentally measured "average" case.

The level of tolerated failure is linked to the clique size q and the number of nodes

in the system n. A pessimistic fault distribution would occur when all faults occur in the

same clique; in this case, the algorithm can only tolerate q — 2 faults to still support the

1-partial ex post Nash solution concept that is used to prove faithfulness in Section 6.6. In

the optimistic case, where faults are distributed uniformly to groups of nodes the size of a

clique, the algorithm's fault tolerance is defined by:

J n mod q (n mod q) < {q - 2)

\ q-2 (n mod q) > (q - 2)

The intuition behind the optimistic calculation is that the algorithm running over

n nodes can support up to q — 2 faulty nodes in every clique. There can be at most [n/q\

sequences of length q that are the maximal packing arrangement pattern. The right-hand

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 122

RaBC Fault Tolerance (100 Nodes)

•-•-•i-.i 1 1 1 — ' 1 '

' - - . ' - • - , ' - - . . q = 3
, N -- . "••.. q=4
\ \ '-.. ••-. q=5

\ \ '•. '. q=6
\- •'•• :\ q=7

\ \ -, •, q=8
\ '. '•• q=9

\ \ q=I0

- ' ' - - - • ' i v ~ - - > - » - ' - - - ' - - i I

I 10 20 30 40 50 60 70

Number of Independent Faults

Figure 6.5: Experimental tolerance to faults as a function of clique size where failures are
independent and randomly distributed.

term makes the bound precise in the case where the number of nodes in the system is not

an integer multiple of the clique size.

Figure 6.5 reflects how the system's fault tolerance varies experimentally in the

case where faults are independent and randomly distributed. From this experiment, we

show the probability that a consensus decision is correct, subject to varying values of q,

and / . For this experiment, the clique size q is varied. The number of total nodes n is

100. For each configuration, we perform 1000 complete independent RaBC consensus runs

and plot the percentage of consensus runs that are executed correctly. This experiment is

interesting in settings where a system is willing to choose the optimal consensus value most

of the time.

For instance, when q — 10, the worst case fault tolerance is q — 2 = 8. However,

there is a 99.9% probability that a correct consensus will occur succesfully with as many as

/ = 26 faults. If a probabilistic optimality is sufficient for the consensus algorithm, then q

can be relatively small, which lowers the total RaBC message cost. The total message cost

is shown in the next experiment.

Message Traffic

The message traffic benchmark shows the communication requirements of the MD-

POP, FaB Paxos, and RaBC algorithms in the no-fault case. The results are shown in

Figure 6.6. Tor underlay traffic is not included in our message traffic graphs.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 123

12,000

10,000

§> 8,000

w
u

e

| 6,000

o 4,000

2,000

0

MDPOP FaBPaxos RaBC 0=3 RaBC Q= 10

Figure 6.6: No-fault message complexity of MDPOP, FaB Paxos, and RaBC with Q=3 and
10 for various network sizes.

RaBC is run with clique sizes 3 and 10, respectively configured to support 1 and 8

(worst-case) non-rationa-lly motivated failures. The figure shows how the cost of using RaBC

increases when deployed for a larger number of possible non-rational faults for different

network sizes n. RaBC generally requires many more messages than MDPOP or Paxos,

but unlike MDPOP and Paxos, is always able to reach the system-optimal consensus even

in the presence of rational and traditional faults. RaBC has less total message traffic than

MDPOP (or Paxos) when the clique size is small (e.g., 3 in Figure 6.6). This traffic savings

can be understood from Step 7 of Figure 6.2; in RaBC, consensus messages are generated

in marginal economies only when the choice in the marginal economy is different from the

choice in the main economy. Unlike MDPOP, which always must run the marginal economy

calculation, message savings in RaBC is possible because of the incentive scheme that

guarantees that a node's shared choice-value vector will be used correctly in the marginal

economy choice calculation. The amount of FaB Paxos traffic does not depend on the level

of desired fault tolerance; FaB Paxos can tolerate ^j^ faults (between 4 and 19 failures

with the choices of n shown). MDPOP would fail in the presence of non-rational faults.

RaBC Scalability

Figure 6.7 shows how RaBC's message traffic scales with clique size and the number

of nodes in the system. RaBC is run with clique sizes 3 through 10, respectively configured

to support 1 to 8 non-rationally motivated failures. The figure shows how the cost of

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 124

12,000

10,000

|) 8,000
ro
v>
CO
0)

E
E 6,000
JB
CO

I 4,000

2,000

3 4 5 6 7 8 9 10
Clique size = Q

Figure 6.7: Message complexity as a function of clique size for various network sizes.

using RaBC increases when deployed for a larger number of possible non-rational faults for

different network sizes n. While no faults were generated while running this experiment,

the extra fault message complexity adds a total of q + 2 extra messages with the referee

because of the recovery optimization discussed in Section 6.5.1.

6.6 Mechanism Proof

To show correctness, we must show safety and liveness. Our use of cryptography

and reliance on the referee ensures that traditional consensus safety concerns [S1-S3] and

liveness concerns [L1-L2] are met. However, the safety property we want to show is that

the selected choice is the value-maximizing choice for all non-faulty nodes [S4]. A necessary

part of this proof is to show that rational nodes choose to exhibit no faults [S5]. Thus we

must show faithfulness, namely that rational nodes do not manipulate their information

and choose to implement the consensus specification correctly.

This faithfulness proof is trickier than the proof of FPSS faithfulness in Chapter 5,

because we now switch the solution concept from ex post Nash to 1-partial ex post Nash. In

other words, we now allow traditional failure. The faithfulness proof is broken up into the

following steps:

• We start with a strategyproof centralized mechanism. In the centralized mechanism,

consensus inputs are already reported truthfully by rational nodes regardless of faulty

information revelation by other nodes.

1

75 nodes — X —
50 nodes ---}£-••

- 25 nodes B

-

-

f:' B

i

B

1

M-'"

a

_,,.-X''"

B

...X'""

;;::.-W":

Z.:~w "

..--x''

..--*•"""

•..:.•.•.•...-« <••'•••-

....-X

-

-.. ;;;•£]

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 125

• We then consider the distributed version of this centralized mechanism. Distributing

the mechanism eliminates the claim of strategyproofness. Instead, in the distributed

version of the mechanism, consensus inputs are reported truthfully by rational nodes

assuming that the mechanism computation and message-passing is correctly imple­

mented.

• To support claims of communication-compatibility (strong-CC) and strong algorithm-

compatibility (strong-AC) for the 1-partial ex post Nash equilibrium, we must prove

two mechanism properties:

1. Any single fault deviation from the suggested algorithm can be identified by at

least one other rational node in a clique.

2. In equilibrium, a rational node will choose to report correctly at least one devi­

ation that it observes and will not falsely report correct behavior as a deviation.

• We finally show strong-AC and strong-CC by proving that these sub-theorems ensure

that a rational node should always follow its suggested message-passing and compu­

tation strategies.

The result is a distributed consensus algorithm that is faithful in the 1-partial ex

post Nash equilibrium. In other words, faithfulness is assured as long as each clique contains

at least two rational nodes.

6.6.1 Truthful Information Revelation

Proposition 6.1. RaBC implements a strategyproof centralized mechanism in a distributed

setting.

Proof. The algorithm in Section 6.4 is a distributed implementation of the centralized

Vickrey-Clarke-Groves (VCG) mechanism [JacOO]. The VCG mechanism provides a so­

lution to resource allocation problems where the goal is to reach a decision that is globally

value-efficient. Truthful reporting is a dominant strategy equilibrium. The distributed ver­

sion of VCG that we use in RaBC is due to Petcu et al, and the proof of faithfulness in the

distributed setting is given in Petcu et al. [PFP06]. Our addition of cliques does not affect

this proof, as the cliques in RaBC simply add redundancy that is not used in the no-failure

model assumed by Petcu et al. •

Petcu et al.'s proof relies on truthfulness properties of VCG, where no agent can

affect its tax payment, and this tax payment is computed as the marginal impact of this

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 126

node's presence on the rest of the nodes in the system. The effects of changing one's declared

value can be to change the consensus choice or to change some other agent's tax payment.

But changing the outcome leads to a correspondingly higher tax meaning that the deviation

is not profitable.

6.6.2 Reliable Fault Detection

Before proving anything about correct message passing or algorithm execution, we

first show that any deviations from the suggested mechanism can be detected by an observer

node, assuming that at least one other node in a clique also chooses to follow the suggested

mechanism. Our reliance on signing provides easy deviation detection. Section 6.4.7 listed

the four types of faults that can occur in RaBC. The first of those, a signing inconsistency,

is immediately verified when a node receives a message, and the received message acts as

proof of the inconsistency. The remaining three faults are reliably detected. Figure 6.6.2

lists these faults, as if made by some node j , and detected by some node i. The table

lists the reasoning node i can use to declare a fault. In the next section, we will show

why a rational node would always want to report this proof to the referee. Because of

cryptographic signing, these proofs are easy to generate and verify. In RaBC, a signed

message is signed by other members of the clique before being processed. The unforgeable

signature logical device used by RaBC means that the signing of a message cannot be faked.

Proposition 6.2. An out-of-bounds input will be reliably detected by a rational node running

the suggested RaBC algorithm in equilibrium.

Proof. An out-of-bounds input implies that a node is attempting to declare a value V that

is either higher or lower than the initial declaration made to the referee in step 1 of the

algorithm mechanics given in Section 6.4.2. This bounds information is sent by the referee

to all other nodes in the faulty node j ' s clique. Then, it is easy to check if the values are out

of bounds (V > Vmax or V' < Vmm), or if the high/low choices do not correspond to the

high/low values. ((C = Cmax & V ^ Vmax) or (C = Cmin k V ^ Vmin)). The observing

node then uses node j ' s signed messages (((C, V) m a % , {{C,V)min)aj, {C,V')aj) to form

a message proof-set that demonstrates the inconsistency. •

Proposition 6.3. An agreement inconsistency will be reliably detected by a rational node

running the suggested RaBC algorithm in equilibrium.

Proof. An agreement inconsistency implies that some node j has performed a its portion

of the value summation incorrectly. In this case, by step 4 of the algorithm mechanics

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 127

Deviation

Out of

bounds

input

Agreement

inconsistent

Message

inconsistent

Proof Set

« C , K) - ') t j

{{C,V)min)a,

(C',V')aj

(Sum)ai

(Sum')aj

(+ Msgs)

(Msg)^

((Ms9%U.
-or- {Msg)ai

(Msg')Cj

(C

(C

Why Detected
\rl \ \rmax

V' < vmin

= cmax & V' =£ vmax)

= Cmin & V' jt vmin)

Sum / Sum'

Msg ^ Msg'

Figure 6.8: Detectable deviations, why nodes can detect
them, and the proofs they can offer to the referee.

given in Section 6.4.2, the observing node i uses received messages (Sum')aj and has its

own computation (Sum)ai, along with the signed component messages that together form

a message proof-set that demonstrates the inconsistency. •

Proposition 6.4. A message inconsistency will be reliably detected by a rational node

running the suggested RaBC algorithm in equilibrium.

Proof. A message is signed by other members of the clique before being processed by an

observing node. The unforgeable signature logical device used by RaBC means that signing

of a message cannot be faked. A message inconsistency implies that some node j has

originated Msg to some observing node and Msg' to another node k. In this case, by

step 4 of the algorithm mechanics given in Section 6.4.2, the observing node uses received

messages {Msg)aj and ((Msg')a:j)ak to form a proof-set that demonstrates an inconsistency.

•

Theorem 6.1. Any single fault deviation from the suggested RaBC algorithm can be iden­

tified by at least one other node in a clique in equilibrium.

Proof. This follows from the last three propositions and the fact that a message signing

inconsistency can be detected. •

Note that this theorem only discusses fault deviations. Halt deviations, where

a node prevents liveness by crashing or rationally deciding not to forward messages, do

not give rational nodes enough information to form a proof. However, the algorithm in

Section 6.4.2 specified that the referee can interrogate a node if a halt is suspected after a

well-defined message timeout.

file:///rmax

www.manaraa.com

Chapter 6; Methodology Applied: Failure in Distributed Consensus 128

Node '* Nature "

N o d e " i " Node " i "

Figure 6.9: A portion of the extensive form representation of a reporting game facing two
rational nodes and a third (potentially faulty) node called Nature. Equilibrium outcome
nodes, found by eliminating non-credible threats, are boxed. This game is described in
Section 6.6.3.

6.6.3 Reliable Deviation Reporting

Reliable deviation reporting is a reporting game played between two rational nodes

in a clique, who respond to the actions of a third node labeled "Nature". By the 1-partial ex

post Nash equilibrium concept, each clique must contain at least two nodes that are rational

(or obedient).4 An extensive form [FT91] representation of this reporting game is pictured

in Figure 6.6.3. The reporting game is actually the last portion of the larger game consisting

of that node's strategic plays in RaBC. Before the reporting game is started, nodes have

revealed their information and have performed their portion of the RaBC algorithm. While

we have not proven that a node's portion of the algorithm was executed correctly, we have

shown in the last section that incorrect execution can be identified by rational nodes. Faulty

behavior generated a proof, while halting behavior required intervention from the referee.

The reporting game analysis shows that a rational node will choose to report a fault to the

referee.

This reporting game runs in a sequential set of stages. Each stage is a complete

instance relating to one of the four faults listed in Section 6.4.7. A node plays the reporting

game with other rational nodes on the receipt of each "proof-set" of messages, which either

4There may be other rational nodes in the clique. In this case, multiple copies of this three-party game
are played simultaneously, but no game affects the strategy of a node in any other game (since a node's
reward and penalty are identical in every game).

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 129

is a proof-of-fault or a proof-of-correctness. The game is a sequential set of stages in that the

same nodes have a series of reporting decisions; it is possible for a node to detect multiple

failures and then decide to report only one of those failures. However, the result of any

failure report is the same: the reporting node receives the same reward regardless of which

fault it reports, and the algorithm restarts with the failed node is excluded.

The game has a final stage when all decisions are made for the set of two game

players, and the node calculates an expected payoff. The payoff is expected (and not

actual) because the payoff is only realized after all nodes in the system are finished playing

the reporting game. So, for example, a node in the first clique must wait for all of the other

nodes in other cliques to finish - and if those other nodes find problems in their own clique's

computations, then the expected reward is canceled as the consensus restarts.

Two stages, representing two decisions, are illustrated in Figure 6.6.3. The second

stage in Figure 6.6.3 is the final stage. Each stage starts by a move by a node labeled

"Nature". This move either generates evidence of a fault, leading along the Failure state, or

generates evidence of no fault, leading down the Correct path. Two game-playing nodes i

and j then simultaneously react to the behavior of this third node. The actions of nodes i

and j lead to payoffs for nodes i and j . The payoff for Nature is not shown; Nature represents

the new existence of a proof-set that was already detected by the reasoning shown in the

last section. Nodes i and j interact with the referee by their decision to Report or Not

Report a claimed fault to the referee. On a Report action by any player, the referee imposes

a reward or penalty and may exclude one or more nodes, and then continues the reporting

game play.

Reward payoffs Ri and Rj are set as described in Section 6.4.8 to be

Ri = 2{Vl
max - V™in) + e

and

Ri = 2(VJnax - Vpin) + e

where e is a small positive value, and V^ax, V£!jm are defined in Section 6.4.3 to be the

maximum and minimum values that those nodes have for any choice. Given that the reward

and penalty payoffs are set as shown in Figure 6.6.3, we show the following propositions.

Proposition 6.5. A rational node has greater utility for reporting a deviation than from

not reporting a deviation in equilibrium.

Proof. Let the observer be node j . Node j must choose between Report and Not Report.

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 130

Choosing Report regardless of node i's decision leads to greater payoff (> Rj) vs. (<

2(Vjnax — VJnm)) and (> e) vs. (—Ri). Working backwards, given that node j chooses to

Report, node i also chooses to Report to maximize its payoff.

•

Proposition 6.6. A rational node's utility is the same regardless of the fault it elects to

report in equilibrium.

Proof. Let the observer be node j . Node j ' s reward is based only Vjnax and Vjnm, (or is

the constant e), which do not vary according to fault. •

Looking carefully at the game tree, one may think that some node j has an in­

centive to overstate yv10-1 or understate V.™". Indeed, if a node believes that it will catch

other nodes in a failure report, then it seems at first glance that the potential reward to

node i is substantial and can be manipulated. However, in equilibrium this is not the case:

Proposition 6.7. A rational node j has no incentive to misreport VJnax or VJnm in equi­

librium.

Proof. By the 1-partial ex post Nash equilibrium concept, at least one non-faulty node is

in the game with node j . The equilibrium behavior is for both nodes to report the fault by

Nature, in which case the reward to node i is always e and does not depend on the reported

value of V(nax or V?™1. •

Proposition 6.8. A rational node receives lower expected utility for reporting correct be­

havior as a deviation in equilibrium.

Proof. Let the observer be node j . Node j must choose between Report and Not Report.

Choosing Not Report regardless of node I'S decision leads to greater payoff (> 0) vs. (—e)

Working backwards, given that node j chooses Not Report, node i also chooses Not Report

to maximize its payoff. •

Proposition 6.9. A rational node's expected utility is unchanged if a faulty node reports

correct behavior as a deviation in equilibrium.

Proof. While Nature's payoff is not shown in Figure 6.6.3, if Nature is correct and the referee

is unable to validate a fault, it is the reporting node who is penalized and not Nature. D

www.manaraa.com

Chapter 6: Methodology Applied: Failure in Distributed Consensus 131

6.6.4 Achieving strong-AC and strong-CC

Theorem 6.2. A node will choose to report correctly at least one deviation that it observes

and will not falsely report correct behavior as a deviation in equilibrium.

Proof. By Theorem 6.1, any single deviation in RaBC can be identified by at least one other

node in the clique. By the equilibrium condition of 1-partial ex post Nash, the identifying

node must be either obedient or rational. If obedient, this theorem is trivially true by virtue

of default behavior. If rational, by Proposition 6.5, the utility maximizing behavior is to

report a deviation, and by Proposition 6.8, correct behavior will not be falsely reported.

To further validate the equilibria shown in Figure 6.6.3, we use a subgame perfect

Nash equilibrium analysis to remove non-credible threats and reveal the only equilibrium

outcomes. This analysis is performed by starting at the leaves of the tree, and for each

decision subgame, asking how rational play would proceed. By induction, one locates the

credible strategies and finds game equilibria. Following this process in Figure 6.6.3 reveals

the game equilibria, which are shown boxed, assuming that Nodes i and j act rationally.

(By the 1-partial ex post Nash equilibrium, it is guaranteed that at least one instance of

this game will be played consisting of two rational nodes.) The equilibria are for Nodes i

and j to both "not report" correct behavior, and to "report" faulty behavior. Because

consensus will not occur if a node is reported as being faulty, consensus is reached in the

single equilibrium with no failure. •

Corollary 6.1. The suggested RaBC algorithm is strong-AC and strong-CC in a 1-partial

ex post Nash equilibrium.

Proof. Strong-AC and Strong-CC imply that a rational node should always follow its sug­

gested message-passing and computation strategies. By Theorem 6.2, a rational node will

report a deviation by any other node. Because of the assumption behind the 1-partial ex

post Nash equilibrium that at least two rational nodes will be in a clique and able to observe

each other's behavior, RaBC is strong-AC and strong-CC. •

Corollary 6.2. RaBC has specification faithfulness.

Proof. True because the corresponding centralized mechanism is strategyproof, and because

RaBC is strong-AC and strong-CC. D

6.6.5 Effects of Collusion and Sybil Attacks

This proof assumes the logical dependencies listed in Section 6.4.1. While an

unforgeable signature device and a bank device may seem obvious, in this section we comment

www.manaraa.com

Chapter 6; Methodology Applied: Failure in Distributed Consensus 132

on the need for an anti-collusion device.

A rational node would benefit with a Sybil attack [Dou02] if it could fake a second

node with the same declared choice-value input. In effect, this behavior would ensure that

node i had zero tax liability. We view this as a form of "self-collusion." In fact, any form of

choice-value collusion can destroy the truthfulness of the VCG mechanism. This suscepti­

bility is well known and previous work has suggested non-systems approaches to limiting the

impact [ER91]. Unfortunately, there is no possible value-maximizing consensus algorithm

where truthful value revelation is a dominant strategy that is immune to collusion. This

strong negative result holds even if the size of a coalition is fixed [GJJ77]. In our device

realization given in Section 6.5.2, we used systems techniques to reduce the chance of col­

lusion. Specifically, an anonymity service is used to hide participants from each other. The

goal is to remove the opportunity for collusion by keeping the identities of the participants

hidden and by limiting their communication to known message formats.

6.7 Summary

This chapter used the Rational Byzantine Generals problem to demonstrate how

incentives can be combined with traditional Byzantine Fault Tolerance (BFT) tools to

prevent rationally motivated failure in information revelation, computation, and message

passing, while staying robust to other Byzantine failures in computation and message pass­

ing.

6.8 Bibliographic Notes

Petcu and Faltings have produced a string of papers on distributed constraint

optimization, such as DPOP [PF05]. Petcu has also released a single-machine simulator of

the related DPOP algorithm [Pet06].

The algorithm in this chapter was inspired by the Bayou [PSTT96] distributed

consistency research. That work is motivated with a meeting room scheduling application,

but Bayou "is intended for use after a group of people have already decided" on the meeting

details and "does not help [participants] determine a mutually agreeable place and time for

a meeting." RaBC started as our method to solve this decision problem.

www.manaraa.com

Chapter 7

Conclusions

7.1 Summary

This thesis formalized faithfulness as the metric by which to judge an algorithm's

tolerance to rationally motivated failure. We identified information revelation failure as

an important type of rationally motivated failure in distributed systems. This type of

failure is well-known within economics but had been overlooked or mis-classified by the

distributed systems community. We introduced the Rational Byzantine Generals problem

in Chapter 2 and used this example to highlight the problems of rationally motivated failure

in information revelation, computation, and message passing.

We examined how to prove faithfulness. A proof of faithfulness is a certification

that rational nodes will choose to follow the algorithm specified by the system designer

given certain assumptions and proved in an appropriate knowledge concept. In Chapter 3

we introduced the k-partial ex post Nash solution concept for systems where failures may

still occur despite the designer's use of incentives. In Chapter 4 we demonstrated one

way to prove that a distributed mechanism is faithful if the mechanism can be shown to

be strong communication- and strong algorithm compatible, and if it has a corresponding

centralized strategyproof mechanism. We gave a three-step methodology for showing these

properties and for certifying mechanism faithfulness: First, the designer specifies the target

environment assumptions, which dictate the node model, knowledge model, and network

model. Second, the designer constructs a new system specification making sure to identify a

subset of rational compatible behavior. The designer further specifies the mechanism, which

is defined by a strategy space and an outcome rule, as well as a suggested node strategy

for each participant type. Finally, the designer provides a rigorous faithfulness proof for a

particular solution concept that holds in the chosen environment and evaluates the trade-offs

133

www.manaraa.com

Chapter 7: Conclusions 134

required to implement a system that is robust to rationally motivated failure.

We applied the rationally motivated failure remedy methodology to two problems.

In Chapter 5 we built an algorithm for the interdomain routing problem based on work

by Feigenbaum et al. [FPSS02] (FPSS). We showed the enhanced algorithm to be faithful

under the ex post Nash solution concept. We implemented the algorithm in simulation,

showing that a node's message cost when running the faithful algorithm depends on its

degree and equates to a 2x-100x message traffic increase on a real Internet topology. We

showed how this overhead can be reduced to 2x-10x when high-degree nodes impose a cap

on the number of neighbors.

In Chapter 6 we applied the rationally motivated failure remedy methodology to

the Rational Byzantine Generals problem. We designed an algorithm called RaBC that

is faithful under the 1-partial ex post Nash equilibrium solution concept. In contrast to

earlier rational-aware systems work (e.g., BAR [AAC+05]), this work provides incentives

for correct behavior in computation, message passing, and information revelation without

placing limitations on types of Byzantine behavior or making assumptions about a node's

willing participation in penance and penalty mechanisms. We implemented the algorithm

over a network and compared the fault tolerance, message complexity, and scalability to

MDPOP [PFP06] and a Byzantine-fault-tolerant version of the Paxos [LamOl] protocol.

Our analysis conveys the relative trade-offs facing the system designer in supporting radi­

cally different fault models, showing for example that RaBC generally has higher message

complexity but can actually beat the message complexity of MDPOP and Paxos while tol­

erating a small number of failures due to the redundancy of shared private information and

the use of a certifying referee.

7.2 Future Work

7.2.1 Faithfulness of non-VCG based Systems

Both systems in Chapters 5 and 6 made use of the Vickrey-Clarke-Groves [Vic61,

Cla71, Gro73] (VCG) mechanism, but the main results of this thesis hold even when decision

problems use a different mechanism.

In many systems settings, the VCG mechanism is not ideal. It is well known that

the VCG mechanism is not tolerant to collusion. Moreover the VCG mechanism requires

infrastructure (a banking system) and assumptions (a participant's ability to value choices)

that many systems designers find heavy and foreign. The advantage of the VCG mechanism

is that it implements effective problem partitioning: The design restriction built into VCG

www.manaraa.com

Chapter 7: Conclusions 135

is that a participant's outcome is not afFected by the input that it feeds into the VCG

algorithm.

Algorithms that do not require direct and truthful private information revelation

have other mechanism options, and it is certainly possible to prove faithfulness under these

looser constraints. In Chapter 4, we gave an example where a dependence on private

information was eliminated: in the Savage et al. [SCWA99] TCP hacking example a message

recipient must acknowledge a packet by echoing a specific number generated by the sender.

In effect, the designer has restricted the set. of manipulative strategics that can be effectively

employed by a manipulative receiver making it easier to show faithfulness. One excellent

candidate for future work is to apply the ideas of faithfulness to other protocols. Any system

that faces rationally motivated failure is a fair candidate for a faithful protocol.

7.2.2 Revised Protocols: RaBC++?

There is also work to be done on upgrading existing protocols (such as RaBC) to

remove remaining centralized components and to improve protocol efficiency. In particular,

we are not completely satisfied with our reliance on a centralized bank. However, the prob­

lem of designing and implementing a decentralized bank running on a network of rational

participants seems difficult. One also might seek to improve the efficiency of existing al­

gorithms: it is possible to optimize RaBC to reduce its message requirements. One might

seek a more efficient version of RaBC in the future, in the same way that FaB Paxos was

developed to address performance concerns in the original Paxos.

7.2.3 D e m o g r a p h i c s of R a t i o n a l i t y

It is anecdotally evident that rationally motivated failure can disrupt systems.

Each of the systems examples in Chapter 1 demonstrates that selfish users exist and are

selfishly willing to subvert an intended specification. But mere existence may not be too

great of a threat; what a designer wants to know is how many users will exhibit rational

behavior in a particular system. We suspect that the answer depends on the details of the

system, such as the types and likelihood of rewards and penalties, the ease of manipulation,

and the sophistication and demographics of users:

• What are the potential rewards for successful manipulation? What are the penalties

if manipulation is detected? (Do I earn money or just extra CPU time? Do I get

thrown out of the system or thrown in jail?)

www.manaraa.com

Chapter 7: Conclusions 136

• How difficult is the manipulation? As we observed in previous work [SPM04], "chang­

ing a command line parameter is easier than modifying a configuration file, which is

easier than changing compiled opcodes in an executable file."

• How sophisticated are the users of a system? Are they able to recognize manipulation

opportunities? Are they technically capable of carrying out a manipulation?

Default client software provides a suggested strategy to an algorithm participant.

While there is a cost to modifying system-provided software, if the utility gained from such

a modification is greater than the cost of modification, a rational participant will expend

this cost. We expect that most algorithm participants will be obedient by default, and that

the system as a whole can rely on this expected obedience to keep other participants in line.

As incentives for rationally motivated failure increase, one may be able to plot rationality

graphs (e.g., "reward vs. ease,") to demonstrate points at which previously obedient agents

become rational agents.

As this thesis was being completed, the author posed this experiment to a group

of Harvard EconCS group talk attendees: can one deploy a system where participants are

given opportunities to manipulate the system, with varying manipulation costs and payoffs,

to determine what percentage of participants is willing to hurt the system in order to achieve

some selfish gain? Seuken et al. [SPP08] have run one version of this experiment, where two

versions of a peer-to-peer file sharing system client named Triber [Del08] have been made

available to the general public. One version of the client is programmed to act selfishly,

while the other client is programmed to act altruistically. Participants are informed of this

choice on initial client download, and are asked in an indirect and validated way if they are

aware of the consequences of their choice. Initial results show significant user bases of both

rational and altruistic participants in this file sharing setting.

7.2.4 Real Currency

As we wrote in Chapter 2, systems that rely on virtual currency often fail in

their goal to convince rational users to play by the system rules. We blame these failures on

economically closed virtual currencies that provide little value to participants. To pick some

examples, the incentive schemes in the Mariposa and Mojonation examples of Chapter 1

failed for two reasons: The first problem was that participants did not know how to value

their virtual currency. The second problem was a variation on "carrying coal to Newcastle"

— some participants were flooded with virtual currency that could only be used to "pay"

for something that they did not want.

www.manaraa.com

Chapter 7: Conclusions 137

Rather than use a meaningless currency, it is possible to use actual currency to

ensure cooperation, as we have assumed in Chapters 5 and 6. Real currency is an interesting

external incentive to address failures in systems where participants can incur real costs for

following the official suggested behavior. For example, in both the Mariposa example and

in the Rational Byzantine Generals problem, it is clear that participants incur a real cost

for correctly following the system specification. An example of a closed, centralized system

that uses currency is Google's Adwords sponsored search slot allocation problem [G00O8].

Some future distributed systems work, when tempted to use a virtual currency, should opt

to use a real currency instead. We feel that there needs to be a fully flushed out and

tested system that is able to evaluate the pros (cooperation) and cons (real world support

structure, increased motivation to cheat) of a real currency in the distributed environment.

7.2.5 M e c h a n i s m E x e c u t i o n

One area of future work is in the area of mechanism execution. Just because a

system designer deploys a faithful mechanism, there is often no reason why participants

must stick to the results of the mechanism in what we call the execution phase on the

algorithm. Consider the following three examples:

In an auction setting like eBay [eBa08], even after a buyer wins an item, the seller

can refuse to sell the item to the winning bidder. In fact, a seller can disregard the results

of the mechanism entirely, opting to sell the item to a bidder inside or outside the system.

In Chapter 5, we presented a system where participants should correctly compute

and use transit packet payments. But there is no binding obligation that nodes will route

packets along lowest-cost paths and choose to respect intended payments. Furthermore,

there is no policing of the data messages: a message from Node A to Node B may consist

of collusive messaging at the application level, and there is little that can done to prevent

this application-level collusion at a systems level.

In Chapter 6, we described a system for picking a system-value maximizing choice,

but there is no guarantee that participants will live by this choice after the mechanism is

finished. In other words, if the system decision is that Node A should become the leader in

a leader election problem, the owner of Node A can simply walk away and refuse to abide

by the mechanism outcome.

These examples demonstrate the problems of enforcing mechanism execution: just

because a designer sets up a mechanism, there is still no guarantee that participants at

run-time will agree to abide by the results of the mechanism. This is a problem in real-life

as well, but society uses mechanism enforcement tools, such as laws, a legal system and jail.

www.manaraa.com

Chapter 7: Conclusions 138

In computing, these enforcement tools are less clearly defined.

7.2.6 Additional Failure Expressions?

When we look back to Chapter 2, and specifically to the table of traditional dis­

tributed system fault expressions in Table 2.1, we notice that information revelation is not

on the list, and for many years has not been viewed as an important type of failure ex­

pression. We wonder if other developments in the last twenty years would allow new types

of failure expression to be added to that list, using the original criteria that the feasibility

(what classes of problems can be solved?) and cost (how complex must the solution be?)

of addressing the failure are distinct from other members on the taxonomy. Are there other

participant behaviors besides information revelation that are newly important in system

design?

7.2.7 Backtracing

The software executed by a particular participant's node is a representation of

that participant's strategy. Each machine code instruction in a program can be thought of

as representing a little bit of one or more components of a node's strategy. Each function

call has the potential to emit an external action, and/or evaluate and change the perceived

state of the world. A system is robust to rational manipulation, and therefore faithful,

if the designer is able to give a node a piece of source code, a set of suggested run-time

options, and state, "Feel free to modify this client as you see fit. One can prove that the

best strategy you can follow is the strategy that I have given you."

In evaluating such a claim, one idea is to extend the technique of backtracing

program slices [Wei81, Tip95] to help a designer find candidate manipulation points in actual

source code. A program slice consists of the parts of a program that potentially affect the

values computed at some point of interest. When it comes to rationally motivated failure,

the points of interest are the goal states of the distributed algorithm. Traditional program

slicing studies one user in a single program, whereas our use of backtracing focuses on at

least two users interfacing with the same client software in a game-like setting. Our earlier

work [SPM04] provided a proof of concept for backtracing, where we defined backtracing

as follows:

For each type of rational participant in the system:

For each communication pattern:

For each goal state:

Trace backwards through program logic.

www.manaraa.com

Chapter 7: Conclusions 139

Mark branches and node interactions as candidate manipulation points.

Examine and classify resulting points.

The result of this process is a set of backtracing graphs. The number of backtracing

graphs depends on the complexity of the system. As such, backtracing is too labor intensive

for large systems, since the depth of the backwards trace depends on the complexity of

the program code. The graphs generated from a backtracing exercise contain candidate

manipulation points that must be examined manually and to reveal the effects of a selfish

manipulation. We observe that similar challenges also affected the viability of program

slicing, but automated tools eventually helped program slicing become more mainstream

and integrated into debugging software [Tip95]. No such backtracing tools exist for finding

manipulation opportunities in source code, and we suggest this as an area of future work.

7.2.8 Repeated Games and Collusion-Proof Games

This thesis did not study either repeated games or collusion-proof games. A re­

peated game is a series of decision problems, in which a user can observe and learn from one

decision problem to reason about strategy in a successive iteration of the decision problem.

Collusion is the coordination of two or more parties to act as one participant.

These research areas are related: repeated games enable signaling between par­

ticipants, which can lead to collusion. On the other hand, collusion in a single game can

allow participants to learn about other users in ways that could have been discerned from

watching a repeated game. We suspect that a whole separate thesis could be written to

address faithfulness in repeated games that face collusion.

7.3 Final Words

Until this thesis, there had been surprisingly little work on rational behavior in

the context of system fault tolerance. Earlier we speculated that rationally motivated

failure had been hidden from designers until the relatively recent rise of the Internet. The

significance of the Internet - as it applies to rationally motivated failure - is that is brings

together a number of diverse participants running a diverse set of algorithms.

Rationally motivated failure will become more pronounced as participants' needs

and designers' goals conflict. Our view is that systems researchers, who until recently

have been able to work in a fault-exclusion mindset, will begin to adopt fault-prevention

techniques to address rational behavior that violates system goals. Our expectation is

that such rationally motivated failures will become a priority for designers as the stakes

www.manaraa.com

Chapter 7: Conclusions 140

determined by distributed algorithms become more important and as algorithms are run

on more diverse sets of participants. Running over rational participants is unavoidable in

many algorithms and this thesis is one important step in helping designers cope with the

associated challenges.

www.manaraa.com

Bibliography

[AAC+05] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe
Martin, and Carl Porth. BAR Fault Tolerance for Cooperative Services. Pro­
ceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP
'05), 2005.

[ABC+02] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and
Roger P. Wattenhofer. Farsite: federated, available, and reliable storage for an
incompletely trusted environment. In OSDI '02: Proceedings of the 5th sympo­
sium on Operating systems design and implementation, pages 1-14, New York,
NY, USA, 2002. ACM.

[ACSV04] Alvin AuYoung, Brent N. Chun, Alex C. Snoeren, and Amin Vahdat. Resource
allocation in federated distributed computing infrastructures. In Proceedings of
OASIS 2004, 2004.

[ADGH06] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed com­
puting meets game theory: robust mechanisms for rational secret sharing and
multiparty computation. In PODC '06: Proceedings of the twenty-fifth an­
nual ACM symposium on Principles of distributed computing, pages 53-62, New
York, NY, USA, 2006. ACM.

[Afe03] Michael Afergan. Repeated game analysis of internet routing (extended ab­
stract). In Poster session at 19th ACM Symposium on Operating Systems
Principles (SOSP '03)., St. Johns, Newfoundland, Canada., October 2003.

[Afe06] Michael Afergan. Using repeated games to design incentive-based routing sys­
tems. In INFOCOM. IEEE, 2006.

[AH00] Eytan Adar and Bernardo Huberman. Free Riding on Gnutella. First Monday,
5(10), October 2000.

[AJ06] Christina Aperjis and Ramesh Johari. A peer-to-peer system as an exchange
economy. In GameNets '06: Proceeding from the 2006 workshop on Game theory
for communications and networks, page 10, New York, NY, USA, 2006. ACM.

[BB02] Sonja Buchegger and Jean-Yves Le Boudec. Performance analysis of the con­
fidant protocol. In MobiHoc '02: Proceedings of the 3rd ACM international
symposium on Mobile ad hoc networking & computing, pages 226-236, New
York, NY, USA, 2002. ACM.

141

www.manaraa.com

Bibliography 142

[Ben23] Jeremy Bentham. An Introduction to the Principles of Morals and Legislation.
W. Pickering, 2rd edition, 1823.

[BH03] Levente Buttyan and Jean-Pierre Hubaux. Stimulating cooperation in self-
organizing mobile ad hoc networks. Mob. Netw. Appl., 8(5):579-592, 2003.

[BOI06] BOINCStats. Why do you participate in BOINC? www. bo incs t a t s . com/page/
pol l_resul ts .php?id=8, 2006. [Online; accessed 07-April-2008].

[Bra02] Felix Brandt. A verifiable, bidder-resolved auction protocol. In Proceedings
of the 5th International Workshop on Deception, Fraud and Trust in Agent
Societies (Special Track on Privacy and Protection with Multi-Agent Systems),
pages 18-25, 2002.

[BS04] Felix Brandt and Tuomas Sandholm. (Im)possibility of unconditionally privacy-
preserving auctions. In Proc. of the 3rd AAMAS, 2004.

[BSS07] Felix Brandt, Tuomas Sandholm, and Yoav Shoham. Spiteful bidding in sealed-
bid auctions. In Manuela M. Veloso, editor, IJCAI, pages 1207-1214, 2007.

[BT04] Ronen I. Brafman and Moshe Tennenholtz. Efficient learning equilibrium. Ar­
tificial Intelligence, 159(l-2):27-47, 2004.

[BW01] Felix Brandt and Gerhard Weifi. Antisocial Agents and Vickrey Auctions. In
Pre-proceedings of the Eighth International Workshop on Agent Theories, Ar­
chitectures, and Languages (ATAL-2001), pages 120-132, 2001.

[Cav06] Ruggiero Cavallo. Optimal decision-making with minimal waste: Strategyproof
redistribution of VCG payments. In Proc. of AAMAS, Hakodate, Japan, May
2006.

[CF05] Alice Cheng and Eric Friedman. Sybilproof reputation mechanisms. In
P2PECON '05: Proceedings of the 2005 ACM SIGCOMM workshop on Eco­
nomics of peer-to-peer systems, pages 128-132, New York, NY, USA, 2005.
ACM.

[cFo06] cFos. cFosSpeed TCP Driver, 2006. www.cfos.de.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In
Proceedings of OSDI, 1999.

[Cla71] Edward H. Clarke. Multipart pricing of public goods. Public Choice, 11:17-33,
1971.

[CMN02] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: making
backup cheap and easy. In OSDI '02: Proceedings of the 5th symposium on
Operating systems design and implementation, pages 285-298, New York, NY,
USA, 2002. ACM.

[CN03] Landon P. Cox and Brian D. Noble. Samsara: honor among thieves in peer-to-
peer storage. In SOSP 'OS: Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 120-132, New York, NY, USA, 2003. ACM.

http://www.cfos.de

www.manaraa.com

Bibliography 143

[Coh03] Bram Cohen. Incentives Build Robustness in BitTorrent. In Workshop on
Economics of Peer to Peer Systems, June 2003.

[Cry07] Cryptlib security toolkit v3.3.2. ht tp:/ /www.cs.auckland.ac.nz/~pgut001/
c r y p t l i b / , 2007. [Online; accessed 22-April-2008].

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. In Journal of the ACM, volume 43, pages 225-267, March
1996.

[Del08] Tribler home page, 2008. [Online; accessed 25-April-2008].

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proc. of the 13th USENIX Security Symposium,
August 2004.

[Dou02] John Douceur. The Sybil Attack. In Proc. of IPTPS, March 2002.

[eBa08] eBay. eBay Home Page, 2008. www.ebay.com.

[EU02] Kfir Eliaz. Fault tolerant implementation. Review of Economic Studies, 69:589-
610, 2002.

[ER91] E. Ephrati and J.S. Rosenschein. The Clarke tax as a consensus mechanism
among automated agents. In Proc. of AAAI, 1991.

[FCSS05] Michal Feldman, John Chuang, Ion Stoica, and Scott Shenker. Hidden-action
in multi-hop routing. In EC '05: Proceedings of the 6th ACM conference on
Electronic commerce, pages 117-126, New York, NY, USA, 2005. ACM.

[FHK06] Eric J. Friedman, Joseph Y. Halpern, and Ian Kash. Efficiency and nash equi­
libria in a scrip system for p2p networks. In EC '06: Proceedings of the 7th
ACM conference on Electronic commerce, pages 140-149, New York, NY, USA,
2006. ACM.

[FKSS01] Joan Feigenbaum, Arvind Krishnamurthy, Rahul Sami, and Scott Shenker. Ap­
proximation and collusion in multicast cost sharing. In Proc. of the 3rd Con­
ference on Electronic Commerce, pages 253-255, 2001.

[FLSC04] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust incentive
techniques for peer-to-peer networks. In EC '04: Proceedings of the 5th ACM
conference on Electronic commerce, pages 102-111, New York, NY, USA, 2004.
ACM.

[FPSS02] Joan Feigenbaum, Christos Papadimitriou, Rahul Sami, and Scott Shenker. A
BGP-based mechanism for lowest-cost routing. In Proceedings of the 2002 ACM
Symposium on Principles of Distributed Computing, pages 173-182, 2002.

[FRS06] Joan Feigenbaum, Vijay Ramachandran, and Michael Schapira. Incentive-
compatible interdomain routing. In EC '06: Proceedings of the 7th ACM con­
ference on Electronic commerce, pages 130-139, New York, NY, USA, 2006.
ACM.

http://www.cs.auckland.ac.nz/~pgut001/
http://www.ebay.com

www.manaraa.com

Bibliography 144

[FRS07] Eric Friedman, Paul Resnick, and Rahul Sami. Manipulation-resistant repu­
tation systems. In Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay
Vazirani, editors, Algorithmic Game Theory, chapter 27. Cambridge University
Press, 2007.

[FS02] Joan Feigenbaum and Scott Shenker. Distributed Algorithmic Mechanism De­
sign: Recent Results and Future Directions. In Proceedings of the 6th Inter­
national Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications, pages 1-13, 2002.

[FSS07] Joan Feigenbaum, Michael Schapira, and Scott Shenker. Distributed algorith­
mic mechanism design. In Noam Nisan, Tim Roughgarden, Eva Tardos, and
Vijay Vazirani, editors, Algorithmic Game Theory, chapter 14. Cambridge Uni­
versity Press, 2007.

[FT91] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

[GG07] Nandan Garg and Daniel Grosu. Faithful distributed shapley mechanisms for
sharing the cost of multicast transmissions. In Proc. of the 12th IEEE Sym­
posium on Computers and Communications (ISCC-07), pages 741-747, July
2007.

[GGS07] Rachel Greenstadt, Barbara Grosz, and Michael D. Smith. SSDPOP: improving
the privacy of DCOP with secret sharing. In A AM AS '07: Proceedings of the 6th
international joint conference on Autonomous agents and multiagent systems,
pages 1-3, New York, NY, USA, 2007. ACM.

[GJ.I77] Jerry Green and Jean-JacquesLaffont. Characterization of satisfactory mecha­
nisms for the revelation of preferences for public goods. Econometrica, 45:427-
438, 1977.

[GK99] Richard J. Gibbens and Frank P. Kelly. Resource pricing and the evolution of
congestion control. In Automatica, volume 35, pages 1969-1985, 1999.

[GK06] S. Dov Gordon and Jonathan Katz. Rational secret sharing, revisited. In
Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of Lecture Notes
in Computer Science, pages 229-241. Springer, 2006.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game. In STOC '87: Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 218-229, New York, NY, USA, 1987. ACM.

[Goo08] Google. Adwords home page, 2008. [Online; accessed 25-April-2008].

[GR01] Lixin Gao and Jennifer Rexford. Stable internet routing without global coordi­

nation. IEEE/ACM Trans. Netw., 9(6):681-692, 2001.

[Gro73] Theodore Groves. Incentives in teams. Econometrica, 41:617-631, 1973.

[GS02] Gerd Gigerenzer and Reinhard Selten, editors. Bounded Rationality: The Adap­
tive Toolbox. The MIT Press, Cambridge, MA, USA, 2002.

www.manaraa.com

Bibliography 145

[GSW02] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable paths
problem and interdomain routing. IEEE/ACM Trans. Netw., 10(2):232-243,
2002.

[GW99] Timothy Griffin and Gordon T. Wilfong. An analysis of BGP convergence
properties. In SIGCOMM, pages 277-288, 1999.

[HCW05] Daniel Hughes, Geoff Coulson, and James Walkerdine. Free riding on gnutella
revisited: The bell tolls? IEEE Distributed Systems Online, 6(6), 2005.

[HT04] Joseph Halpern and Vanessa Teague. Rational secret sharing and multiparty
computation: extended abstract. In STOC '04-' Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 623-632, New York,
NY, USA, 2004. ACM.

[HTK98] Michael Harkavy, J. D. Tygar, and Hiroaki Kikuchi. Electronic auctions with
private bids. In WOEC'98: Proc. of the 3rd conference on USENIX Workshop
on Electronic Commerce, 1998.

[IIKP02] John Ioannidis, Sotiris Ioannidis, Angelos D. Keromytis, and Vassilis Prevelakis.
Fileteller: Paying and getting paid for file storage. In Matt Blaze, editor,
Financial Cryptography, volume 2357 of Lecture Notes in Computer Science,
pages 282-299. Springer, 2002.

[IML05] Sergei Izmalkov, Silvio Micali, and Matt Lepinski. Rational secure computation
and ideal mechanism design. In FOCS '05: Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science, pages 585-595, Washington,
DC, USA, 2005. IEEE Computer Society.

[JA05] Seung Jun and Mustaque Ahamad. Incentives in bittorrent induce free riding.
In P2PECON '05: Proc. of the 2005 ACM SIGCOMM Workshop on Economics
of P2P Systems, pages 116-121, New York, NY, USA, 2005. ACM.

[JacOO] Matthew O. Jackson. Mechanism theory. In The Encyclopedia of Life Support
Systems. EOLSS Publishers, 2000.

[JanOO] John Jannotti. Network Services in an Uncooperative Internet. h t t p :
/ /arstechnica.com/reviews/2q00/networking/networking-l .html, 2000.
[Online; accessed 07-April-2008].

[KahOl] Leander Kahney. Cheaters bow to peer pressure, http://www.wired.com/
science/discoveries/news/2001/02/41838, 2001. [Online; accessed 29-May-
2008].

[Kat] Glez Katz. K-hack: The ultimate kazaa hack. [Online; accessed 28-May-2008].

[KFH07] Ian A. Kash, Eric J. Friedman, and Joseph Y. Halpern. Optimizing scrip sys­
tems: efficiency, crashes, hoarders, and altruists. In EC '07: Proceedings of the
8th ACM conference on Electronic commerce, pages 305-315, New York, NY,
USA, 2007. ACM.

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The

http://www.wired.com/

www.manaraa.com

Bibliography 146

eigentrust algorithm for reputation management in p2p networks. In Proceedings
of the Twelfth International World Wide Web Conference (WWW), 2003.

[Kur02] Klaus Kursawe. Optimistic byzantine agreement. In SRDS, pages 262-267,
2002.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Corn-put. Syst.,
16(2):133-169, 1998.

[LamOl] Butler Lampson. The ABCD's of Paxos. In Proc. of PODC, 2001.

[LF82] Leslie Lamport and Michael J. Fischer. Byzantine generals and transactions
commit protocols. Technical Report Opus 62, SRI International, Menlo Park,
California, 1982.

[LL73] C. L. Liu and James W. Lay land. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46-61, 1973.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free
Riding in BitTorrent is Cheap. In 5th Workshop on Hot Topics in Networks
(HotNets), Irvine, California, USA, November 2006.

[LNKZ06] Nikitas Liogkas, Robert Nelson, Eddie Kohler, and Lixia Zhang. Exploiting
bittorrent for fun (but not profit). In Proc. of IPTPS, 2006.

[LRA+05] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A. Huber-
man. Tycoon: An implementation of a distributed, market-based resource al­
location system. Multiagent Grid Syst, 1(3): 169-182, 2005.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst, 4(3):382-401, 1982.

[LSZ06] Hagay Levin, Michael Schapira, and Aviv Zohar. The strategic justification
for BGP. Technical report, Leibniz Center for Research in Computer Science,
2006. [Online; accessed 28-October-2007].

[LT06] Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behav­
ior in multi-party computation. In Cynthia Dwork, editor, CRYPTO, volume
4117 of Lecture Notes in Computer Science, pages 180-197. Springer, 2006.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MA05] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine consensus. In Pro­
ceedings of DSN, June 2005.

[McCOl] Jim McCoy. Mojo nation responds, http://www.openp2p.eom/pub/a/p2p/
2001/01/11/mojo.html, 2001. [Online; accessed 29-May-2008].

[MGLB00] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing
misbehavior in mobile ad hoc networks. In MobiCom '00: Proceedings of the
6th annual international conference on Mobile computing and networking, pages
255-265, New York, NY, USA, 2000. ACM.

http://www.openp2p.eom/pub/a/p2p/

www.manaraa.com

Bibliography 147

[Mic08] As topology project, topology.eecs.umich.edu/data.html, 2008. [Online;
accessed 07-April-2007].

[MPS03] Robert McGrew, Ryan Porter, and Yoav Shoham. Towards a general theory of
non-cooperative computation. In TARK '03: Proceedings of the 9th conference
on Theoretical aspects of rationality and knowledge, pages 59-71, New York,
NY, USA, 2003. ACM.

[MRWZ04] Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan. Experi­
ences applying game theory to system design. In PINS '04: Proceedings of the
ACM SIGCOMM workshop on Practice and theory of incentives in networked
systems, pages 183-190, New York, NY, USA, 2004. ACM.

[MT99] Dov Monderer and Moshe Tennenholtz. Distributed games. Games and Eco­
nomic Behavior, 28(l):55-72, 1999.

[MT02] John C. Mitchell and Vanessa Teague. Autonomous nodes and distributed
mechanisms. In Mitsuhiro Okada, Benjamin C. Pierce, Andre Scedrov, Hideyuki
Tokuda, and Akinori Yonezawa, editors, ISSS, volume 2609 of Lecture Notes in
Computer Science, pages 58-83. Springer, 2002.

[Mu'05] Ahuva Mu'alem. On decentralized incentive compatible mechanisms. In EC '05:
Proceedings of the 6th ACM conference on Electronic commerce, pages 240-248,
New York, NY, USA, 2005. ACM.

[Nas50] John Nash. Equilibrium points in n-person games. In Proceedings of the Na­
tional Academy of Sciences, volume 36, pages 48-49, 1950.

[Nee93] Roger M. Needham. Cryptography and secure channels. In Distributed systems
(2nd Ed.), pages 531-541. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 1993.

[Net07] Sharman Networks. Kazaa. http://www.kazaa.com, 2007. [Online; accessed
07-April-2007].

[NR99] Noam Nisan and Amir Ronen. Algorithmic Mechanism Design. In Proceedings
of the 31st ACM Symposium on Theory of Computing, pages 129-140, 1999.

[NROO] Noam Nisan and Amir Ronen. Computationally feasible VCG mechanisms. In
Proc. 2nd ACM Conf. on Electronic Commerce (EC-00), pages 242-252, 2000.

[NWD03] Tsuen-Wan Ngan, Dan S. Wallach, and Peter Druschel. Enforcing fair sharing
of peer-to-peer resources. In M. Frans Kaashoek and Ion Stoica, editors, IPTPS,
volume 2735 of Lecture Notes in Computer Science, pages 149-159. Springer,
2003.

[Oni03] Onion content delivery network, http:/ /onionnetworks.com/, 2003.

[Ore08] Route views project web page, http:/ /www.routeviews.org/, 2008. [Online;
accessed 07-April-2007].

[PapOl] C H Papadimitriou. Algorithms, games and the Internet. In Proc. 33rd Annual

http://topology.eecs.umich.edu/data.html
http://www.kazaa.com
http://onionnetworks.com/
http://www.routeviews.org/

www.manaraa.com

Bibliography 148

ACM Symp. on the Theory of Computing, pages 749-753, 2001.

[ParOl] David C. Parkes. Iterative Combinatorial Auctions: Achieving Economic and
Computational Efficiency. PhD thesis, University of Pennsylvania, May 2001.

[Par04] David C. Parkes. Harvard university computer sci­
ence 286r: Computational Mechanism Design, 2004.
http://www.eecs.harvard.edu/~parkes/cs286r/syllabus.html.

[Pay06] PayPal. PayPal API Documentation, 2006. www.paypal.com.

[PCAR02] Larry Peterson, David Culler, Tom Anderson, and Timothy Roscoe. A
blueprint for introducing disruptive technology into the internet. cite-
seer.nj.nec.com/peterson02blueprint.html, 2002.

[Pet06] Adrian Petcu. FRODO: A FRamework for Open/Distributed constraint Opti­
mization. Technical Report No. 2006/001, Swiss Federal Institute of Technology
(EPFL), Lausanne, Switzerland, 2006. http://liawww.epfl.ch/frodo/.

[PF05] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint
optimization. In Leslie Pack Kaelbling and Alessandro Safhotti, editors, IJCAI,
pages 266-271. Professional Book Center, 2005.

[PFP06] Adrian Petcu, Boi Faltings, and David C. Parkes. MDPOP: faithful distributed
implementation of efficient social choice problems. In AAMAS '06: Proceedings
of the fifth international joint conference on Autonomous agents and multiagent
systems, pages 1397-1404, New York, NY, USA, 2006. ACM.

[PIA+07] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy, and
Arun Venkataramani. Do incentives build robustness in bittorrent? In NSDI'07,
Cambridge, MA, April 2007.

[Plu75] Plutarch. Ship of theseus - the Internet Classics Archive, h t t p : / / c l a s s i c s .
mit .edu/Plutarch/ theseus .html , 75. [Online; accessed 5-September-2008].

[PS04] David C. Parkes and Jeffrey Shneidman. Distributed implementations of
vickrey-clarke-groves mechanisms. In Proc. 3rd Int. Joint Conf. on Autonomous
Agents and Multi Agent Systems, pages 261-268, 2004.

[PSST01] Adrian Perrig, Sean W. Smith, Dawn Xiaodong Song, and J. D. Tygar. Sam:
A flexible and secure auction architecture using trusted hardware. In IPDPS
'01: Proceedings of the 15th International Parallel & Distributed Processing
Symposium, page 170, Washington, DC, USA, 2001. IEEE Computer Society.

[PSTT96] Karin Petersen, Mike Spreitzer, Douglas B. Terry, and Marvin Theimer. Bayou:
replicated database services for world-wide applications. In Andrew Herbert
and Andrew S. Tanenbaum, editors, ACM SIGOPS European Workshop, pages
275-280. ACM, 1996.

[Rei95] Michael K. Reiter. The rampart toolkit for building high-integrity services. In
Selected Papers from the International Workshop on Theory and Practice in
Distributed Systems, pages 99-110, London, UK, 1995. Springer-Verlag.

http://www.eecs.harvard.edu/~parkes/cs286r/syllabus.html
http://www.paypal.com
http://seer.nj.nec.com/peterson02blueprint.html
http://liawww.epfl.ch/frodo/
http://classics
http://mit.edu/Plutarch/theseus.html

www.manaraa.com

Bibliography 149

[RET02] Tim Roughgarden and Eva Tardos. How bad is selfish routing? J. ACM,
49(2):236-259, 2002.

[RKZF00] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputa­
tion systems. Commun. ACM, 43(12):45-48, 2000.

[RO01] Alvin E. Roth and Axel Ockenfels. Last-Minute bidding and the rules for
ending second-price auctions: Evidence from eBay and Amazon auctions on
the internet. American Economic Review, 2001. forthcoming.

[RotOSj Alvin E. Roth, editor. The Shapley Value: Essays in Honor of Lloyd S. Shapley.
Cambridge University Press, 2005.

[RouOl] Tim Roughgarden. Designing networks for selfish users is hard. In Proc. \2nd
Ann. Symp. on Foundations of Computer Science, pages 472-481, 2001.

[RSA83] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 26(l):96-99, 1983.

[SAL+96] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah,
Jeff Sidcll, Carl Staclin, and Andrew Yu. Mariposa: A wide-area distributed
database system. VLDB Journal: Very Large Data Bases, 5(l):48-63, 1996.

[Sch93] Fred B. Schneider. What good are models and what models are good. In Sape
Mullender, editor, Distributed Systems, chapter 2. Addison Wesley, 1993.

[Sch95] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and
source code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[SCWA99] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. TCP con­
gestion control with a misbehaving receiver. Computer Communication Review,
29(5), 1999.

[Sel86] Reinhard Selten. Evolutionary stability in extensive two-person games correc­
tion and further development. Discussion Paper Serie A 70, University of Bonn,
Germany, May 1986.

[SH03] Michael Stonebraker and Joseph M. Hellerstein, editors. Readings in database
systems. Morgan Kaufmann, 3rd edition, 2003.

[SNP+05] Jeffrey Shneidman, Chaki Ng, David C. Parkes, Alvin AuYoung, Alex C. Sno-
eren, Amin Vahdat, and Brent Chun. Why markets could (but don't currently)
solve resource allocation problems in systems. In HOTOS'05: Proceedings of
the 10th conference on Hot Topics in Operating Systems, pages 7-7, Berkeley,
CA, USA, 2005. USENIX Association.

[SP04] Jeffrey Shneidman and David C. Parkes. Specification Faithfulness in Networks
with Rational Nodes. In Twenty-Third Annual ACM SIGACT-SIGOPS Sym­
posium on Principles of Distributed Computing (PODC 2004), July 2004.

[SPM04] Jeffrey Shneidman, David C. Parkes, and Laurent Massoulie. Faithfulness in
Internet Algorithms. In Proceedings of 3rd SIGCOMM workshop on Practice

www.manaraa.com

Bibliography 150

and Theory of Incentives in Networked Systems (PINS). ACM, 2004.

[SPP08] Sven Seuken, Johan Pouwelse, and David Parkes. Selfishness vs. altruism in
p2p networks: A large-scale economics field experiment. In In preparation for
submission., 2008.

[ST03] Yoav Shoham and Moshe Tennenholtz. Non-cooperative evaluation of logical
formulas: The propositional case., 2003. Unpublished Manuscript.

[Tip95] Prank Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121-189, 1995.

[Tor07] TorrentFreak. GreedyTorrent: The Deadly BitTorrent Sin. h t t p :
/ / t o r r en t f r eak .com/greedy to r ren t - the -dead ly -b i t to r r en t - s in / , 2007.
[Online; accessed 07-April-2007].

[Use05] MacNN Users. New altivec-enhanced seti worker in need of test­
ing (message thread), http://forums.macnn.com/72/team-macnn/266339/
new-alt ivec-enhanced-seti-worker-need/, 2005. [Online; accessed 29-
May-2008].

[Use06] Rosetta@Home Users. Connection Error (message thread), 2006. h t t p : / /
boinc.bakerlab.org/rosetta/forum_thread.php?id=883.

[Use07] ArsTechnica Users. BOINC Optimized client - still an advantage? (mes­
sage thread). h t tp : / /epis teme.ars technica .eom/eve/forums/a / tpc/ f /
122097561/m/328001213831, 2007. [Online; accessed 29-May-2008].

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.
Journal of Finance, 16:8-37, 1961.

[vOWK07] P.C. van Oorschot, Tao Wan, and Evangelos Kranakis. On interdomain routing
security and pretty secure bgp (psbgp). ACM Trans. Inf. Syst. Secur., 10(3):11,
2007.

[Wei81] Mark Weiser. Program slicing. In Proc. of the 5th International Conference on
Software Engineering, pages 439-449. IEEE Computer Society Press, 1981.

[Wei92] William E. Weihl. Specifications of concurrent and distributed systems. In Sape
Mullender, editor, Distributed Systems, 2nd Ed., chapter 3. Addison Wesley,
1992.

[WHH+92] Carl A Waldspurger, Tad Hogg, Bernado Huberman, Jeffrey O Kephart, and
W. Scott Stornetta. Spawn: A distributed computational economy. IEEE
Trans, on Software Engineering, 18:103-117, 1992.

[ZCY03] Sheng Zhong, Jiang Chen, and Richard Yang. Sprite: A simple, cheat-proof,
credit-based system for mobile ad-hoc networks. In INFOCOM, 2003.

http://forums.macnn.com/72/team-macnn/266339/
http://
http://episteme.arstechnica.eom/eve/forums/a/tpc/f/

